Anthropic Claude¶
Class: AnthropicClaudeBlockV1
Source: inference.core.workflows.core_steps.models.foundation.anthropic_claude.v1.AnthropicClaudeBlockV1
Ask a question to Anthropic Claude model with vision capabilities.
You can specify arbitrary text prompts or predefined ones, the block supports the following types of prompt:
-
Open Prompt (
unconstrained
) - Use any prompt to generate a raw response -
Text Recognition (OCR) (
ocr
) - Model recognizes text in the image -
Visual Question Answering (
visual-question-answering
) - Model answers the question you submit in the prompt -
Captioning (short) (
caption
) - Model provides a short description of the image -
Captioning (
detailed-caption
) - Model provides a long description of the image -
Single-Label Classification (
classification
) - Model classifies the image content as one of the provided classes -
Multi-Label Classification (
multi-label-classification
) - Model classifies the image content as one or more of the provided classes -
Unprompted Object Detection (
object-detection
) - Model detects and returns the bounding boxes for prominent objects in the image -
Structured Output Generation (
structured-answering
) - Model returns a JSON response with the specified fields
You need to provide your Anthropic API key to use the Claude model.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/anthropic_claude@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the Claude model. | ✅ |
output_structure |
Dict[str, str] |
Dictionary with structure of expected JSON response. | ❌ |
classes |
List[str] |
List of classes to be used. | ✅ |
api_key |
str |
Your Anthropic API key. | ✅ |
model_version |
str |
Model to be used. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response.. | ❌ |
temperature |
float |
Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are.. | ✅ |
max_image_size |
int |
Maximum size of the image - if input has larger side, it will be downscaled, keeping aspect ratio. | ✅ |
max_concurrent_requests |
int |
Number of concurrent requests that can be executed by block when batch of input images provided. If not given - block defaults to value configured globally in Workflows Execution Engine. Please restrict if you hit Anthropic API limits.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Anthropic Claude
in version v1
.
- inputs:
OpenAI
,VLM as Detector
,Keypoint Detection Model
,Circle Visualization
,Roboflow Dataset Upload
,Gaze Detection
,Roboflow Custom Metadata
,Depth Estimation
,SIFT
,Florence-2 Model
,Buffer
,Template Matching
,Dimension Collapse
,Grid Visualization
,Dynamic Zone
,Instance Segmentation Model
,Color Visualization
,CSV Formatter
,Perspective Correction
,Model Monitoring Inference Aggregator
,Image Slicer
,OpenAI
,Model Comparison Visualization
,Clip Comparison
,Stitch Images
,Dynamic Crop
,Image Contours
,Webhook Sink
,Pixelate Visualization
,Llama 3.2 Vision
,SIFT Comparison
,Camera Calibration
,Line Counter
,Reference Path Visualization
,Image Blur
,Local File Sink
,Blur Visualization
,OCR Model
,Ellipse Visualization
,Trace Visualization
,Corner Visualization
,Camera Focus
,Polygon Zone Visualization
,Google Gemini
,OpenAI
,Triangle Visualization
,Stability AI Inpainting
,Classification Label Visualization
,Single-Label Classification Model
,Bounding Box Visualization
,Size Measurement
,Distance Measurement
,CogVLM
,Image Convert Grayscale
,Halo Visualization
,LMM
,Email Notification
,Polygon Visualization
,Absolute Static Crop
,Object Detection Model
,Slack Notification
,Dot Visualization
,Label Visualization
,Stability AI Outpainting
,Crop Visualization
,Cosine Similarity
,Google Vision OCR
,Stability AI Image Generation
,Image Threshold
,Pixel Color Count
,Stitch OCR Detections
,Image Preprocessing
,Identify Changes
,SIFT Comparison
,Mask Visualization
,Florence-2 Model
,Twilio SMS Notification
,Clip Comparison
,Roboflow Dataset Upload
,Line Counter Visualization
,VLM as Classifier
,Anthropic Claude
,Background Color Visualization
,LMM For Classification
,Line Counter
,Image Slicer
,Keypoint Visualization
,Multi-Label Classification Model
,Relative Static Crop
- outputs:
YOLO-World Model
,OpenAI
,VLM as Detector
,Keypoint Detection Model
,Circle Visualization
,Roboflow Dataset Upload
,PTZ Tracking (ONVIF)
.md),Roboflow Custom Metadata
,Perception Encoder Embedding Model
,Florence-2 Model
,Cache Set
,Buffer
,Detections Stitch
,Grid Visualization
,Instance Segmentation Model
,Color Visualization
,Detections Consensus
,Object Detection Model
,Perspective Correction
,Path Deviation
,Model Monitoring Inference Aggregator
,OpenAI
,Keypoint Detection Model
,Model Comparison Visualization
,Clip Comparison
,Dynamic Crop
,Moondream2
,Webhook Sink
,Llama 3.2 Vision
,Line Counter
,Reference Path Visualization
,Local File Sink
,Time in Zone
,Image Blur
,Cache Get
,CLIP Embedding Model
,Ellipse Visualization
,Trace Visualization
,Corner Visualization
,Google Gemini
,Detections Classes Replacement
,Polygon Zone Visualization
,OpenAI
,Triangle Visualization
,Stability AI Inpainting
,Classification Label Visualization
,Bounding Box Visualization
,Distance Measurement
,CogVLM
,Halo Visualization
,LMM
,Email Notification
,Polygon Visualization
,Slack Notification
,Object Detection Model
,Dot Visualization
,Label Visualization
,Stability AI Outpainting
,Crop Visualization
,Google Vision OCR
,Stability AI Image Generation
,Image Threshold
,Pixel Color Count
,Image Preprocessing
,VLM as Classifier
,SIFT Comparison
,JSON Parser
,Mask Visualization
,Time in Zone
,Twilio SMS Notification
,Segment Anything 2 Model
,Florence-2 Model
,Clip Comparison
,Roboflow Dataset Upload
,Line Counter Visualization
,Path Deviation
,VLM as Classifier
,Anthropic Claude
,Instance Segmentation Model
,LMM For Classification
,Background Color Visualization
,Line Counter
,Keypoint Visualization
,Size Measurement
,VLM as Detector
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Anthropic Claude
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..prompt
(string
): Text prompt to the Claude model.classes
(list_of_values
): List of classes to be used.api_key
(Union[secret
,string
]): Your Anthropic API key.model_version
(string
): Model to be used.temperature
(float
): Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are..max_image_size
(integer
): Maximum size of the image - if input has larger side, it will be downscaled, keeping aspect ratio.
-
output
output
(Union[string
,language_model_output
]): String value ifstring
or LLM / VLM output iflanguage_model_output
.classes
(list_of_values
): List of values of any type.
Example JSON definition of step Anthropic Claude
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/anthropic_claude@v1",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"output_structure": {
"my_key": "description"
},
"classes": [
"class-a",
"class-b"
],
"api_key": "xxx-xxx",
"model_version": "claude-3-5-sonnet",
"max_tokens": "<block_does_not_provide_example>",
"temperature": "<block_does_not_provide_example>",
"max_image_size": "<block_does_not_provide_example>",
"max_concurrent_requests": "<block_does_not_provide_example>"
}