Anthropic Claude¶
Class: AnthropicClaudeBlockV1
Source: inference.core.workflows.core_steps.models.foundation.anthropic_claude.v1.AnthropicClaudeBlockV1
Ask a question to Anthropic Claude model with vision capabilities.
You can specify arbitrary text prompts or predefined ones, the block supports the following types of prompt:
-
Open Prompt (
unconstrained
) - Use any prompt to generate a raw response -
Text Recognition (OCR) (
ocr
) - Model recognizes text in the image -
Visual Question Answering (
visual-question-answering
) - Model answers the question you submit in the prompt -
Captioning (short) (
caption
) - Model provides a short description of the image -
Captioning (
detailed-caption
) - Model provides a long description of the image -
Single-Label Classification (
classification
) - Model classifies the image content as one of the provided classes -
Multi-Label Classification (
multi-label-classification
) - Model classifies the image content as one or more of the provided classes -
Unprompted Object Detection (
object-detection
) - Model detects and returns the bounding boxes for prominent objects in the image -
Structured Output Generation (
structured-answering
) - Model returns a JSON response with the specified fields
You need to provide your Anthropic API key to use the Claude model.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/anthropic_claude@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the Claude model. | ✅ |
output_structure |
Dict[str, str] |
Dictionary with structure of expected JSON response. | ❌ |
classes |
List[str] |
List of classes to be used. | ✅ |
api_key |
str |
Your Anthropic API key. | ✅ |
model_version |
str |
Model to be used. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response.. | ❌ |
temperature |
float |
Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are.. | ✅ |
max_image_size |
int |
Maximum size of the image - if input has larger side, it will be downscaled, keeping aspect ratio. | ✅ |
max_concurrent_requests |
int |
Number of concurrent requests that can be executed by block when batch of input images provided. If not given - block defaults to value configured globally in Workflows Execution Engine. Please restrict if you hit Anthropic API limits.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Anthropic Claude
in version v1
.
- inputs:
Polygon Zone Visualization
,LMM For Classification
,VLM as Classifier
,Distance Measurement
,Dot Visualization
,Morphological Transformation
,Size Measurement
,Blur Visualization
,Perspective Correction
,Clip Comparison
,Corner Visualization
,LMM
,Pixel Color Count
,Florence-2 Model
,Grid Visualization
,Image Threshold
,Florence-2 Model
,Halo Visualization
,OpenAI
,Multi-Label Classification Model
,CogVLM
,EasyOCR
,Line Counter Visualization
,Stitch OCR Detections
,Stability AI Outpainting
,Twilio SMS Notification
,Keypoint Detection Model
,Google Vision OCR
,Identify Changes
,Camera Focus
,Roboflow Dataset Upload
,SIFT
,Email Notification
,Instance Segmentation Model
,Image Slicer
,Image Convert Grayscale
,Keypoint Visualization
,Clip Comparison
,Template Matching
,OCR Model
,Llama 3.2 Vision
,Bounding Box Visualization
,Line Counter
,Reference Path Visualization
,Dynamic Crop
,Roboflow Dataset Upload
,Mask Visualization
,Image Preprocessing
,Background Color Visualization
,Local File Sink
,Webhook Sink
,Camera Calibration
,OpenAI
,Depth Estimation
,Image Slicer
,QR Code Generator
,Cosine Similarity
,SIFT Comparison
,Trace Visualization
,Object Detection Model
,Contrast Equalization
,Buffer
,Crop Visualization
,Stability AI Image Generation
,Dimension Collapse
,SIFT Comparison
,Roboflow Custom Metadata
,Model Comparison Visualization
,Pixelate Visualization
,Dynamic Zone
,Model Monitoring Inference Aggregator
,Gaze Detection
,Line Counter
,Anthropic Claude
,Relative Static Crop
,Image Contours
,Polygon Visualization
,OpenAI
,Slack Notification
,Triangle Visualization
,Classification Label Visualization
,Circle Visualization
,Image Blur
,Label Visualization
,Google Gemini
,VLM as Detector
,Absolute Static Crop
,Stability AI Inpainting
,Icon Visualization
,Ellipse Visualization
,Color Visualization
,CSV Formatter
,Single-Label Classification Model
,Stitch Images
- outputs:
Distance Measurement
,Time in Zone
,Polygon Zone Visualization
,LMM For Classification
,VLM as Classifier
,Dot Visualization
,Morphological Transformation
,Size Measurement
,Perspective Correction
,Clip Comparison
,Corner Visualization
,LMM
,Pixel Color Count
,Florence-2 Model
,PTZ Tracking (ONVIF)
.md),Grid Visualization
,Image Threshold
,Florence-2 Model
,Halo Visualization
,OpenAI
,Keypoint Detection Model
,CogVLM
,Line Counter Visualization
,Perception Encoder Embedding Model
,Stitch OCR Detections
,VLM as Detector
,Stability AI Outpainting
,Twilio SMS Notification
,VLM as Classifier
,CLIP Embedding Model
,Google Vision OCR
,Keypoint Detection Model
,Roboflow Dataset Upload
,Email Notification
,Instance Segmentation Model
,Clip Comparison
,Keypoint Visualization
,Llama 3.2 Vision
,Bounding Box Visualization
,Line Counter
,Instance Segmentation Model
,Reference Path Visualization
,Dynamic Crop
,Roboflow Dataset Upload
,Mask Visualization
,Image Preprocessing
,Background Color Visualization
,Local File Sink
,Webhook Sink
,OpenAI
,QR Code Generator
,Detections Stitch
,Trace Visualization
,Time in Zone
,Object Detection Model
,Contrast Equalization
,Buffer
,Cache Set
,Crop Visualization
,Stability AI Image Generation
,SIFT Comparison
,Roboflow Custom Metadata
,Cache Get
,Object Detection Model
,Model Comparison Visualization
,Model Monitoring Inference Aggregator
,Line Counter
,Anthropic Claude
,Time in Zone
,Polygon Visualization
,Slack Notification
,OpenAI
,Path Deviation
,JSON Parser
,Triangle Visualization
,YOLO-World Model
,Classification Label Visualization
,Detections Classes Replacement
,Circle Visualization
,Image Blur
,Label Visualization
,Google Gemini
,VLM as Detector
,Stability AI Inpainting
,Icon Visualization
,Ellipse Visualization
,Color Visualization
,Path Deviation
,Detections Consensus
,Moondream2
,Segment Anything 2 Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Anthropic Claude
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..prompt
(string
): Text prompt to the Claude model.classes
(list_of_values
): List of classes to be used.api_key
(Union[string
,secret
]): Your Anthropic API key.model_version
(string
): Model to be used.temperature
(float
): Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are..max_image_size
(integer
): Maximum size of the image - if input has larger side, it will be downscaled, keeping aspect ratio.
-
output
output
(Union[string
,language_model_output
]): String value ifstring
or LLM / VLM output iflanguage_model_output
.classes
(list_of_values
): List of values of any type.
Example JSON definition of step Anthropic Claude
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/anthropic_claude@v1",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"output_structure": {
"my_key": "description"
},
"classes": [
"class-a",
"class-b"
],
"api_key": "xxx-xxx",
"model_version": "claude-sonnet-4",
"max_tokens": "<block_does_not_provide_example>",
"temperature": "<block_does_not_provide_example>",
"max_image_size": "<block_does_not_provide_example>",
"max_concurrent_requests": "<block_does_not_provide_example>"
}