Circle Visualization¶
Class: CircleVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.circle.v1.CircleVisualizationBlockV1
The CircleVisualization
block draws a circle around detected
objects in an image using Supervision's sv.CircleAnnotator
.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/circle_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
color_palette |
str |
Select a color palette for the visualised elements.. | ✅ |
palette_size |
int |
Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes.. | ✅ |
custom_colors |
List[str] |
Define a list of custom colors for bounding boxes in HEX format.. | ✅ |
color_axis |
str |
Choose how bounding box colors are assigned.. | ✅ |
thickness |
int |
Thickness of the lines in pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Circle Visualization
in version v1
.
- inputs:
Keypoint Detection Model
,CogVLM
,Image Convert Grayscale
,Anthropic Claude
,Google Vision OCR
,Gaze Detection
,OpenAI
,Detections Classes Replacement
,Florence-2 Model
,Detection Offset
,Distance Measurement
,Pixelate Visualization
,Dimension Collapse
,Single-Label Classification Model
,SIFT
,VLM as Detector
,OpenAI
,Moondream2
,Stability AI Image Generation
,YOLO-World Model
,SIFT Comparison
,Mask Visualization
,Object Detection Model
,Image Slicer
,Overlap Filter
,Triangle Visualization
,VLM as Detector
,Path Deviation
,CSV Formatter
,Polygon Zone Visualization
,Model Comparison Visualization
,Crop Visualization
,Classification Label Visualization
,LMM
,Segment Anything 2 Model
,Keypoint Detection Model
,Reference Path Visualization
,Multi-Label Classification Model
,Twilio SMS Notification
,Line Counter
,Google Gemini
,Bounding Box Visualization
,Image Contours
,Roboflow Custom Metadata
,Byte Tracker
,Size Measurement
,Circle Visualization
,Perspective Correction
,Slack Notification
,Pixel Color Count
,Polygon Visualization
,Detections Transformation
,VLM as Classifier
,Instance Segmentation Model
,Trace Visualization
,Detections Merge
,Webhook Sink
,Color Visualization
,Identify Changes
,Detections Consensus
,LMM For Classification
,Image Threshold
,Detections Stitch
,SIFT Comparison
,JSON Parser
,Absolute Static Crop
,Clip Comparison
,Line Counter Visualization
,Stitch Images
,Line Counter
,Dot Visualization
,Detections Filter
,Identify Outliers
,Dynamic Zone
,Instance Segmentation Model
,Background Color Visualization
,Florence-2 Model
,Model Monitoring Inference Aggregator
,Detections Stabilizer
,Stitch OCR Detections
,Image Slicer
,Template Matching
,Bounding Rectangle
,Roboflow Dataset Upload
,Roboflow Dataset Upload
,Image Blur
,Time in Zone
,Email Notification
,Camera Focus
,Grid Visualization
,Path Deviation
,Object Detection Model
,Blur Visualization
,Label Visualization
,Stability AI Inpainting
,Depth Estimation
,Image Preprocessing
,Llama 3.2 Vision
,Byte Tracker
,Ellipse Visualization
,ONVIF Control
,VLM as Classifier
,Byte Tracker
,Halo Visualization
,Corner Visualization
,Camera Calibration
,Clip Comparison
,Time in Zone
,Buffer
,Dynamic Crop
,Relative Static Crop
,OpenAI
,Keypoint Visualization
,Velocity
,OCR Model
,Local File Sink
- outputs:
Keypoint Detection Model
,CogVLM
,OpenAI
,Anthropic Claude
,Google Vision OCR
,Image Convert Grayscale
,Gaze Detection
,Florence-2 Model
,SmolVLM2
,Pixelate Visualization
,Single-Label Classification Model
,SIFT
,Qwen2.5-VL
,VLM as Detector
,OpenAI
,Moondream2
,YOLO-World Model
,Stability AI Image Generation
,Object Detection Model
,Mask Visualization
,Image Slicer
,Barcode Detection
,Triangle Visualization
,VLM as Detector
,Polygon Zone Visualization
,Model Comparison Visualization
,Crop Visualization
,LMM
,Classification Label Visualization
,Segment Anything 2 Model
,Keypoint Detection Model
,Reference Path Visualization
,Multi-Label Classification Model
,Google Gemini
,Bounding Box Visualization
,Image Contours
,Circle Visualization
,Perspective Correction
,Pixel Color Count
,Polygon Visualization
,VLM as Classifier
,Instance Segmentation Model
,Trace Visualization
,Color Visualization
,LMM For Classification
,Image Threshold
,Detections Stitch
,SIFT Comparison
,Absolute Static Crop
,Clip Comparison
,Line Counter Visualization
,Stitch Images
,Multi-Label Classification Model
,QR Code Detection
,Dot Visualization
,Instance Segmentation Model
,Background Color Visualization
,Florence-2 Model
,Detections Stabilizer
,Image Slicer
,Template Matching
,Roboflow Dataset Upload
,Roboflow Dataset Upload
,Image Blur
,Camera Focus
,CLIP Embedding Model
,Object Detection Model
,Stability AI Inpainting
,Blur Visualization
,Label Visualization
,Depth Estimation
,Image Preprocessing
,Llama 3.2 Vision
,Byte Tracker
,Ellipse Visualization
,VLM as Classifier
,Halo Visualization
,Corner Visualization
,Camera Calibration
,Clip Comparison
,Time in Zone
,Buffer
,Dynamic Crop
,Single-Label Classification Model
,Relative Static Crop
,OpenAI
,Keypoint Visualization
,Dominant Color
,OCR Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Circle Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions
(Union[instance_segmentation_prediction
,object_detection_prediction
,keypoint_detection_prediction
]): Model predictions to visualize..color_palette
(string
): Select a color palette for the visualised elements..palette_size
(integer
): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..custom_colors
(list_of_values
): Define a list of custom colors for bounding boxes in HEX format..color_axis
(string
): Choose how bounding box colors are assigned..thickness
(integer
): Thickness of the lines in pixels..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Circle Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/circle_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.object_detection_model.predictions",
"color_palette": "DEFAULT",
"palette_size": 10,
"custom_colors": [
"#FF0000",
"#00FF00",
"#0000FF"
],
"color_axis": "CLASS",
"thickness": 2
}