Classification Label Visualization¶
Class: ClassificationLabelVisualizationBlockV1
Visualizes classification predictions with customizable labels and positioning options. Perfect for creating clear, informative displays of model predictions!
How It Works¶
This visualization processes classification predictions by:
-
🎯 Analyzing predictions based on task type (single-label or multi-label)
-
📊 Organizing results by confidence score
-
🎨 Rendering labels with customizable positioning and styling
Parameters¶
-
task_type: Specifies how to handle predictions. Available options:-
"single-label": Shows only the highest confidence prediction
-
"multi-label": Displays all predictions above threshold
-
-
text_position: Controls label placement with 9 options:- Top: LEFT, CENTER, RIGHT
- Center: LEFT, CENTER, RIGHT
- Bottom: LEFT, CENTER, RIGHT
-
text: Determines what information to display:- "Class": Only show class names
- "Confidence": Only show confidence scores
- "Class and Confidence": Show both
-
text_padding: Controls spacing between labels and from image edges
Why Use This Visualization?¶
This is especially useful for:
-
🏷️ Creating clear, professional-looking prediction displays
-
📱 Supporting different UI layouts with flexible positioning
-
🎨 Customizing appearance for different use cases
-
📊 Showing prediction confidence in an intuitive way
Example Usage¶
Use this visualization after any classification model to display predictions in a clean, organized format. Perfect for both single predictions and multiple class probabilities.
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/classification_label_visualization@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
color_palette |
str |
Select a color palette for the visualised elements.. | ✅ |
palette_size |
int |
Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes.. | ✅ |
custom_colors |
List[str] |
Define a list of custom colors for bounding boxes in HEX format.. | ✅ |
color_axis |
str |
Choose how bounding box colors are assigned.. | ✅ |
text |
str |
The data to display in the text labels.. | ✅ |
text_position |
str |
The anchor position for placing the label.. | ✅ |
text_color |
str |
Color of the text.. | ✅ |
text_scale |
float |
Scale of the text.. | ✅ |
text_thickness |
int |
Thickness of the text characters.. | ✅ |
text_padding |
int |
Padding around the text in pixels.. | ✅ |
border_radius |
int |
Radius of the label in pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Classification Label Visualization in version v1.
- inputs:
Size Measurement,Absolute Static Crop,VLM as Detector,Relative Static Crop,JSON Parser,Keypoint Visualization,Object Detection Model,Clip Comparison,LMM For Classification,VLM as Classifier,Google Vision OCR,Slack Notification,Dimension Collapse,Trace Visualization,Color Visualization,Instance Segmentation Model,Polygon Zone Visualization,Camera Focus,Halo Visualization,Identify Changes,CSV Formatter,OCR Model,Camera Calibration,Dynamic Zone,VLM as Classifier,Triangle Visualization,Single-Label Classification Model,Stability AI Inpainting,Image Threshold,Reference Path Visualization,Corner Visualization,Ellipse Visualization,OpenAI,Single-Label Classification Model,Morphological Transformation,Roboflow Custom Metadata,Grid Visualization,Image Preprocessing,CogVLM,Line Counter Visualization,OpenAI,SIFT Comparison,Florence-2 Model,Roboflow Dataset Upload,Stitch OCR Detections,Label Visualization,PTZ Tracking (ONVIF).md),Model Comparison Visualization,Multi-Label Classification Model,Multi-Label Classification Model,Roboflow Dataset Upload,OpenAI,Template Matching,Line Counter,Line Counter,Model Monitoring Inference Aggregator,Polygon Visualization,Llama 3.2 Vision,Icon Visualization,Local File Sink,Blur Visualization,Image Contours,Clip Comparison,Identify Outliers,VLM as Detector,Twilio SMS Notification,Bounding Box Visualization,SIFT,Classification Label Visualization,Background Color Visualization,Webhook Sink,Dynamic Crop,Dot Visualization,Pixelate Visualization,Detections Consensus,Email Notification,Buffer,Image Slicer,Stitch Images,Crop Visualization,Mask Visualization,SIFT Comparison,QR Code Generator,Pixel Color Count,Depth Estimation,Image Slicer,Google Gemini,Perspective Correction,Image Convert Grayscale,Stability AI Image Generation,Keypoint Detection Model,EasyOCR,Contrast Equalization,Distance Measurement,Anthropic Claude,Image Blur,Circle Visualization,Stability AI Outpainting,LMM,Florence-2 Model - outputs:
Absolute Static Crop,VLM as Detector,Relative Static Crop,Keypoint Visualization,Clip Comparison,Object Detection Model,LMM For Classification,SmolVLM2,VLM as Classifier,Google Vision OCR,Seg Preview,Color Visualization,Trace Visualization,Instance Segmentation Model,Polygon Zone Visualization,Camera Focus,Halo Visualization,OCR Model,Camera Calibration,VLM as Classifier,Triangle Visualization,Single-Label Classification Model,Segment Anything 2 Model,Stability AI Inpainting,Image Threshold,Reference Path Visualization,Corner Visualization,Gaze Detection,Ellipse Visualization,OpenAI,Single-Label Classification Model,Morphological Transformation,Image Preprocessing,CogVLM,Line Counter Visualization,OpenAI,YOLO-World Model,Florence-2 Model,Roboflow Dataset Upload,Label Visualization,Model Comparison Visualization,Multi-Label Classification Model,Multi-Label Classification Model,Roboflow Dataset Upload,Template Matching,OpenAI,Polygon Visualization,Instance Segmentation Model,Detections Stabilizer,Llama 3.2 Vision,Icon Visualization,Time in Zone,Blur Visualization,Image Contours,Clip Comparison,VLM as Detector,Object Detection Model,Moondream2,Bounding Box Visualization,SIFT,Classification Label Visualization,Background Color Visualization,Dynamic Crop,Dot Visualization,Pixelate Visualization,Dominant Color,QR Code Detection,Byte Tracker,Buffer,CLIP Embedding Model,Image Slicer,Stitch Images,Crop Visualization,Qwen2.5-VL,Keypoint Detection Model,Perception Encoder Embedding Model,Mask Visualization,SIFT Comparison,Barcode Detection,Pixel Color Count,Depth Estimation,Google Gemini,Image Slicer,Perspective Correction,Keypoint Detection Model,Image Convert Grayscale,Stability AI Image Generation,EasyOCR,Contrast Equalization,Anthropic Claude,Image Blur,Circle Visualization,Stability AI Outpainting,LMM,Detections Stitch,Florence-2 Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Classification Label Visualization in version v1 has.
Bindings
-
input
image(image): The image to visualize on..copy_image(boolean): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions(classification_prediction): Classification predictions..color_palette(string): Select a color palette for the visualised elements..palette_size(integer): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..custom_colors(list_of_values): Define a list of custom colors for bounding boxes in HEX format..color_axis(string): Choose how bounding box colors are assigned..text(string): The data to display in the text labels..text_position(string): The anchor position for placing the label..text_color(string): Color of the text..text_scale(float): Scale of the text..text_thickness(integer): Thickness of the text characters..text_padding(integer): Padding around the text in pixels..border_radius(integer): Radius of the label in pixels..
-
output
image(image): Image in workflows.
Example JSON definition of step Classification Label Visualization in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/classification_label_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.classification_model.predictions",
"color_palette": "DEFAULT",
"palette_size": 10,
"custom_colors": [
"#FF0000",
"#00FF00",
"#0000FF"
],
"color_axis": "CLASS",
"text": "LABEL",
"text_position": "CENTER",
"text_color": "WHITE",
"text_scale": 1.0,
"text_thickness": 1,
"text_padding": 10,
"border_radius": 0
}