Classification Label Visualization¶
Class: ClassificationLabelVisualizationBlockV1
Visualize classification predictions as text labels positioned on images, automatically handling both single-label and multi-label classification formats with customizable styling and positioning.
How This Block Works¶
This block takes an image and classification predictions (for entire image classification, not object detection) and displays text labels showing the predicted class names and confidence scores. The block:
- Takes an image and classification predictions as input
- Automatically detects whether predictions are single-label (one class per image) or multi-label (multiple classes per image)
- For single-label predictions: selects the highest confidence prediction to display
- For multi-label predictions: formats and sorts all predicted classes by confidence score (highest first)
- Extracts label text based on the selected text option (class name, confidence score, or both)
- Positions labels on the image at the specified location (top, center, or bottom edges, with left/center/right alignment)
- Applies background color styling based on the selected color palette, with colors assigned by class
- Renders text labels with customizable text color, scale, thickness, padding, and border radius
- Returns an annotated image with classification labels overlaid on the original image
Unlike the regular Label Visualization block (which labels detected objects with bounding boxes), this block is designed for image-level classification where the entire image is classified into one or more categories. Labels are positioned at the edges or center of the image itself, not relative to object locations. For multi-label predictions, multiple labels are stacked vertically at the chosen position, making it easy to see all predicted classes and their confidence scores.
Common Use Cases¶
- Image Classification Results Display: Visualize the predicted class and confidence score for classified images in applications like content moderation, product categorization, or medical image analysis
- Multi-Class Probability Visualization: Display multiple predicted classes with their confidence scores for multi-label classification tasks, such as tagging images with multiple attributes, detecting multiple defects, or identifying multiple objects in scene classification
- Model Performance Validation: Show classification predictions directly on images to validate model performance, verify correct classifications, and identify misclassifications during model development or testing
- User Interface Integration: Create clean, professional displays of classification results for applications, dashboards, or mobile apps where users need to see what an image was classified as
- Documentation and Reporting: Generate annotated images showing classification results for reports, documentation, or training data review to demonstrate model predictions
- Quality Control Workflows: Display classification results on production images for quality control, content filtering, or automated categorization workflows where visual confirmation of predictions is needed
Connecting to Other Blocks¶
The annotated image from this block can be connected to:
- Data storage blocks (e.g., Local File Sink, CSV Formatter, Roboflow Dataset Upload) to save annotated images with classification labels for documentation, reporting, or analysis
- Webhook blocks to send visualized results with classification labels to external systems, APIs, or web applications for display in dashboards or classification monitoring tools
- Notification blocks (e.g., Email Notification, Slack Notification) to send annotated images with classification labels as visual evidence in alerts or reports when specific classes are detected
- Video output blocks to create annotated video streams or recordings with classification labels for live monitoring, real-time classification display, or post-processing analysis
- Conditional logic blocks (e.g., Continue If) to route workflow execution based on classification results or confidence scores displayed in the labels
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/classification_label_visualization@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
color_palette |
str |
Select a color palette for the visualised elements.. | ✅ |
palette_size |
int |
Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes.. | ✅ |
custom_colors |
List[str] |
Define a list of custom colors for bounding boxes in HEX format.. | ✅ |
color_axis |
str |
Choose how bounding box colors are assigned.. | ✅ |
text |
str |
Content to display in text labels. Options: 'Class' (class name only), 'Confidence' (confidence score only, formatted as decimal), or 'Class and Confidence' (both class name and confidence score).. | ✅ |
text_position |
str |
Position for placing labels on the image. Options include: TOP (TOP_LEFT, TOP_CENTER, TOP_RIGHT), CENTER (CENTER_LEFT, CENTER, CENTER_RIGHT), or BOTTOM (BOTTOM_LEFT, BOTTOM_CENTER, BOTTOM_RIGHT). For multi-label predictions, labels are stacked vertically at the chosen position.. | ✅ |
text_color |
str |
Color of the label text. Can be a color name (e.g., 'WHITE', 'BLACK') or color code in HEX format (e.g., '#FFFFFF') or RGB format (e.g., 'rgb(255, 255, 255)').. | ✅ |
text_scale |
float |
Scale factor for text size. Higher values create larger text. Default is 1.0.. | ✅ |
text_thickness |
int |
Thickness of text characters in pixels. Higher values create bolder, thicker text for better visibility.. | ✅ |
text_padding |
int |
Padding around the text in pixels. Controls the spacing between the text and the label background border, and the spacing between multiple labels in multi-label predictions.. | ✅ |
border_radius |
int |
Border radius of the label background in pixels. Set to 0 for square corners. Higher values create more rounded corners for a softer appearance.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Classification Label Visualization in version v1.
- inputs:
Icon Visualization,Image Preprocessing,LMM,Blur Visualization,Color Visualization,Contrast Equalization,Llama 3.2 Vision,Reference Path Visualization,SIFT,OpenAI,Buffer,Halo Visualization,Trace Visualization,Roboflow Dataset Upload,Dimension Collapse,Twilio SMS/MMS Notification,VLM as Detector,Single-Label Classification Model,Image Convert Grayscale,Background Color Visualization,Multi-Label Classification Model,Single-Label Classification Model,Camera Calibration,VLM as Detector,Triangle Visualization,Dynamic Zone,Ellipse Visualization,Slack Notification,Absolute Static Crop,Google Gemini,Webhook Sink,Line Counter Visualization,Florence-2 Model,Detections Consensus,QR Code Generator,Anthropic Claude,Object Detection Model,Image Slicer,Pixel Color Count,Image Contours,Stability AI Inpainting,VLM as Classifier,Line Counter,Google Gemini,Motion Detection,SIFT Comparison,Line Counter,Keypoint Detection Model,Dot Visualization,Camera Focus,Bounding Box Visualization,OCR Model,Background Subtraction,OpenAI,Dynamic Crop,Distance Measurement,Keypoint Visualization,Email Notification,Image Threshold,Anthropic Claude,Corner Visualization,Pixelate Visualization,SIFT Comparison,Twilio SMS Notification,Morphological Transformation,Roboflow Custom Metadata,Stitch Images,Circle Visualization,Stability AI Image Generation,Image Blur,Template Matching,Detections List Roll-Up,Email Notification,Detection Event Log,EasyOCR,Google Gemini,Classification Label Visualization,Clip Comparison,CogVLM,Google Vision OCR,Stitch OCR Detections,LMM For Classification,Text Display,Multi-Label Classification Model,Mask Visualization,Local File Sink,OpenAI,Anthropic Claude,Polygon Zone Visualization,Polygon Visualization,Model Comparison Visualization,JSON Parser,Label Visualization,Perspective Correction,Image Slicer,Identify Changes,Instance Segmentation Model,Stability AI Outpainting,VLM as Classifier,Grid Visualization,Relative Static Crop,CSV Formatter,Size Measurement,Camera Focus,Florence-2 Model,Identify Outliers,Crop Visualization,Clip Comparison,Roboflow Dataset Upload,PTZ Tracking (ONVIF).md),Model Monitoring Inference Aggregator,Depth Estimation,OpenAI - outputs:
Icon Visualization,Image Preprocessing,LMM,Blur Visualization,Moondream2,Morphological Transformation,Stitch Images,Color Visualization,Contrast Equalization,Gaze Detection,Llama 3.2 Vision,Stability AI Image Generation,Template Matching,Image Blur,Reference Path Visualization,Circle Visualization,SIFT,OpenAI,Buffer,SAM 3,Perception Encoder Embedding Model,Halo Visualization,EasyOCR,Google Gemini,Roboflow Dataset Upload,Trace Visualization,Twilio SMS/MMS Notification,Instance Segmentation Model,Single-Label Classification Model,VLM as Detector,Classification Label Visualization,Clip Comparison,Image Convert Grayscale,CogVLM,Google Vision OCR,Background Color Visualization,Multi-Label Classification Model,Qwen2.5-VL,QR Code Detection,Single-Label Classification Model,Camera Calibration,VLM as Detector,Segment Anything 2 Model,LMM For Classification,Triangle Visualization,Text Display,CLIP Embedding Model,SAM 3,Ellipse Visualization,Seg Preview,Multi-Label Classification Model,Barcode Detection,OpenAI,Mask Visualization,Anthropic Claude,Absolute Static Crop,Google Gemini,Time in Zone,Polygon Zone Visualization,Polygon Visualization,Model Comparison Visualization,Label Visualization,Line Counter Visualization,Perspective Correction,Florence-2 Model,Dominant Color,Image Slicer,Instance Segmentation Model,Stability AI Outpainting,Object Detection Model,Anthropic Claude,Keypoint Detection Model,VLM as Classifier,Relative Static Crop,Byte Tracker,Image Slicer,Pixel Color Count,VLM as Classifier,Image Contours,Stability AI Inpainting,Camera Focus,Google Gemini,Motion Detection,Florence-2 Model,Object Detection Model,SIFT Comparison,Detections Stitch,Keypoint Detection Model,Dot Visualization,Camera Focus,YOLO-World Model,Crop Visualization,Clip Comparison,Bounding Box Visualization,OCR Model,Background Subtraction,OpenAI,SAM 3,Detections Stabilizer,Roboflow Dataset Upload,Qwen3-VL,Dynamic Crop,Keypoint Visualization,Email Notification,Image Threshold,Anthropic Claude,Corner Visualization,Depth Estimation,OpenAI,Pixelate Visualization,SmolVLM2
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Classification Label Visualization in version v1 has.
Bindings
-
input
image(image): The image to visualize on..copy_image(boolean): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions(classification_prediction): Classification predictions from a single-label or multi-label classification model. The block automatically detects the prediction format and handles both types accordingly..color_palette(string): Select a color palette for the visualised elements..palette_size(integer): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..custom_colors(list_of_values): Define a list of custom colors for bounding boxes in HEX format..color_axis(string): Choose how bounding box colors are assigned..text(string): Content to display in text labels. Options: 'Class' (class name only), 'Confidence' (confidence score only, formatted as decimal), or 'Class and Confidence' (both class name and confidence score)..text_position(string): Position for placing labels on the image. Options include: TOP (TOP_LEFT, TOP_CENTER, TOP_RIGHT), CENTER (CENTER_LEFT, CENTER, CENTER_RIGHT), or BOTTOM (BOTTOM_LEFT, BOTTOM_CENTER, BOTTOM_RIGHT). For multi-label predictions, labels are stacked vertically at the chosen position..text_color(string): Color of the label text. Can be a color name (e.g., 'WHITE', 'BLACK') or color code in HEX format (e.g., '#FFFFFF') or RGB format (e.g., 'rgb(255, 255, 255)')..text_scale(float): Scale factor for text size. Higher values create larger text. Default is 1.0..text_thickness(integer): Thickness of text characters in pixels. Higher values create bolder, thicker text for better visibility..text_padding(integer): Padding around the text in pixels. Controls the spacing between the text and the label background border, and the spacing between multiple labels in multi-label predictions..border_radius(integer): Border radius of the label background in pixels. Set to 0 for square corners. Higher values create more rounded corners for a softer appearance..
-
output
image(image): Image in workflows.
Example JSON definition of step Classification Label Visualization in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/classification_label_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.classification_model.predictions",
"color_palette": "DEFAULT",
"palette_size": 10,
"custom_colors": [
"#FF0000",
"#00FF00",
"#0000FF"
],
"color_axis": "CLASS",
"text": "LABEL",
"text_position": "CENTER",
"text_color": "WHITE",
"text_scale": 1.0,
"text_thickness": 1,
"text_padding": 10,
"border_radius": 0
}