Classification Label Visualization¶
Class: ClassificationLabelVisualizationBlockV1
Visualize classification predictions as text labels positioned on images, automatically handling both single-label and multi-label classification formats with customizable styling and positioning.
How This Block Works¶
This block takes an image and classification predictions (for entire image classification, not object detection) and displays text labels showing the predicted class names and confidence scores. The block:
- Takes an image and classification predictions as input
- Automatically detects whether predictions are single-label (one class per image) or multi-label (multiple classes per image)
- For single-label predictions: selects the highest confidence prediction to display
- For multi-label predictions: formats and sorts all predicted classes by confidence score (highest first)
- Extracts label text based on the selected text option (class name, confidence score, or both)
- Positions labels on the image at the specified location (top, center, or bottom edges, with left/center/right alignment)
- Applies background color styling based on the selected color palette, with colors assigned by class
- Renders text labels with customizable text color, scale, thickness, padding, and border radius
- Returns an annotated image with classification labels overlaid on the original image
Unlike the regular Label Visualization block (which labels detected objects with bounding boxes), this block is designed for image-level classification where the entire image is classified into one or more categories. Labels are positioned at the edges or center of the image itself, not relative to object locations. For multi-label predictions, multiple labels are stacked vertically at the chosen position, making it easy to see all predicted classes and their confidence scores.
Common Use Cases¶
- Image Classification Results Display: Visualize the predicted class and confidence score for classified images in applications like content moderation, product categorization, or medical image analysis
- Multi-Class Probability Visualization: Display multiple predicted classes with their confidence scores for multi-label classification tasks, such as tagging images with multiple attributes, detecting multiple defects, or identifying multiple objects in scene classification
- Model Performance Validation: Show classification predictions directly on images to validate model performance, verify correct classifications, and identify misclassifications during model development or testing
- User Interface Integration: Create clean, professional displays of classification results for applications, dashboards, or mobile apps where users need to see what an image was classified as
- Documentation and Reporting: Generate annotated images showing classification results for reports, documentation, or training data review to demonstrate model predictions
- Quality Control Workflows: Display classification results on production images for quality control, content filtering, or automated categorization workflows where visual confirmation of predictions is needed
Connecting to Other Blocks¶
The annotated image from this block can be connected to:
- Data storage blocks (e.g., Local File Sink, CSV Formatter, Roboflow Dataset Upload) to save annotated images with classification labels for documentation, reporting, or analysis
- Webhook blocks to send visualized results with classification labels to external systems, APIs, or web applications for display in dashboards or classification monitoring tools
- Notification blocks (e.g., Email Notification, Slack Notification) to send annotated images with classification labels as visual evidence in alerts or reports when specific classes are detected
- Video output blocks to create annotated video streams or recordings with classification labels for live monitoring, real-time classification display, or post-processing analysis
- Conditional logic blocks (e.g., Continue If) to route workflow execution based on classification results or confidence scores displayed in the labels
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/classification_label_visualization@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
color_palette |
str |
Select a color palette for the visualised elements.. | ✅ |
palette_size |
int |
Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes.. | ✅ |
custom_colors |
List[str] |
Define a list of custom colors for bounding boxes in HEX format.. | ✅ |
color_axis |
str |
Choose how bounding box colors are assigned.. | ✅ |
text |
str |
Content to display in text labels. Options: 'Class' (class name only), 'Confidence' (confidence score only, formatted as decimal), or 'Class and Confidence' (both class name and confidence score).. | ✅ |
text_position |
str |
Position for placing labels on the image. Options include: TOP (TOP_LEFT, TOP_CENTER, TOP_RIGHT), CENTER (CENTER_LEFT, CENTER, CENTER_RIGHT), or BOTTOM (BOTTOM_LEFT, BOTTOM_CENTER, BOTTOM_RIGHT). For multi-label predictions, labels are stacked vertically at the chosen position.. | ✅ |
text_color |
str |
Color of the label text. Can be a color name (e.g., 'WHITE', 'BLACK') or color code in HEX format (e.g., '#FFFFFF') or RGB format (e.g., 'rgb(255, 255, 255)').. | ✅ |
text_scale |
float |
Scale factor for text size. Higher values create larger text. Default is 1.0.. | ✅ |
text_thickness |
int |
Thickness of text characters in pixels. Higher values create bolder, thicker text for better visibility.. | ✅ |
text_padding |
int |
Padding around the text in pixels. Controls the spacing between the text and the label background border, and the spacing between multiple labels in multi-label predictions.. | ✅ |
border_radius |
int |
Border radius of the label background in pixels. Set to 0 for square corners. Higher values create more rounded corners for a softer appearance.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Classification Label Visualization in version v1.
- inputs:
Mask Visualization,Classification Label Visualization,Detections Consensus,Instance Segmentation Model,Webhook Sink,Multi-Label Classification Model,Email Notification,QR Code Generator,VLM As Detector,Multi-Label Classification Model,LMM,Corner Visualization,Image Convert Grayscale,Stability AI Outpainting,Halo Visualization,JSON Parser,Object Detection Model,Single-Label Classification Model,Trace Visualization,Google Vision OCR,Clip Comparison,CSV Formatter,Text Display,Stitch Images,Google Gemini,Local File Sink,Slack Notification,VLM As Classifier,Roboflow Dataset Upload,PTZ Tracking (ONVIF).md),Color Visualization,Dot Visualization,Polygon Visualization,Anthropic Claude,Buffer,Contrast Equalization,Identify Changes,Dimension Collapse,SIFT Comparison,Halo Visualization,Florence-2 Model,Blur Visualization,Label Visualization,Twilio SMS/MMS Notification,Ellipse Visualization,OpenAI,SIFT,Model Monitoring Inference Aggregator,Single-Label Classification Model,Detections List Roll-Up,OpenAI,Image Threshold,Background Color Visualization,Model Comparison Visualization,Size Measurement,OpenAI,Polygon Visualization,Twilio SMS Notification,Bounding Box Visualization,OCR Model,Icon Visualization,Google Gemini,Florence-2 Model,Roboflow Dataset Upload,Anthropic Claude,Dynamic Zone,Dynamic Crop,VLM As Detector,Google Gemini,Image Blur,Line Counter,Stability AI Inpainting,Template Matching,Image Contours,Morphological Transformation,Triangle Visualization,Relative Static Crop,Camera Calibration,Grid Visualization,Camera Focus,Image Slicer,LMM For Classification,Line Counter Visualization,Llama 3.2 Vision,Keypoint Detection Model,Distance Measurement,SIFT Comparison,Camera Focus,Background Subtraction,Image Slicer,Circle Visualization,Identify Outliers,Clip Comparison,Email Notification,Image Preprocessing,Depth Estimation,Line Counter,CogVLM,Absolute Static Crop,Roboflow Custom Metadata,EasyOCR,Stitch OCR Detections,Perspective Correction,Anthropic Claude,Pixelate Visualization,Stability AI Image Generation,Reference Path Visualization,Keypoint Visualization,VLM As Classifier,Detection Event Log,Polygon Zone Visualization,Stitch OCR Detections,Crop Visualization,Pixel Color Count,Motion Detection,OpenAI - outputs:
Anthropic Claude,Mask Visualization,Classification Label Visualization,Instance Segmentation Model,Multi-Label Classification Model,Email Notification,Dynamic Crop,CLIP Embedding Model,VLM As Detector,VLM As Detector,Google Gemini,Multi-Label Classification Model,LMM,SAM 3,Image Blur,Corner Visualization,Image Convert Grayscale,Byte Tracker,Stability AI Outpainting,SmolVLM2,Segment Anything 2 Model,Halo Visualization,Stability AI Inpainting,Object Detection Model,Template Matching,Single-Label Classification Model,Image Contours,Trace Visualization,Google Vision OCR,Morphological Transformation,Triangle Visualization,Instance Segmentation Model,Clip Comparison,Detections Stitch,Relative Static Crop,Text Display,Stitch Images,Google Gemini,Camera Calibration,Detections Stabilizer,VLM As Classifier,Roboflow Dataset Upload,Camera Focus,Color Visualization,Dot Visualization,Image Slicer,Polygon Visualization,Object Detection Model,Anthropic Claude,LMM For Classification,Line Counter Visualization,Keypoint Detection Model,Buffer,Llama 3.2 Vision,Contrast Equalization,SIFT Comparison,Camera Focus,Perception Encoder Embedding Model,Dominant Color,Time in Zone,Background Subtraction,Image Slicer,Circle Visualization,Moondream2,Seg Preview,Halo Visualization,Florence-2 Model,Blur Visualization,Qwen3-VL,Twilio SMS/MMS Notification,Label Visualization,Barcode Detection,Clip Comparison,Ellipse Visualization,OpenAI,QR Code Detection,SIFT,Image Preprocessing,SAM 3,Single-Label Classification Model,OpenAI,Image Threshold,Background Color Visualization,Model Comparison Visualization,Depth Estimation,OpenAI,Motion Detection,Keypoint Detection Model,CogVLM,Absolute Static Crop,Gaze Detection,EasyOCR,Perspective Correction,Qwen2.5-VL,Anthropic Claude,Pixelate Visualization,Reference Path Visualization,Stability AI Image Generation,Keypoint Visualization,SAM 3,Polygon Visualization,VLM As Classifier,Bounding Box Visualization,Polygon Zone Visualization,OCR Model,YOLO-World Model,Icon Visualization,Crop Visualization,Pixel Color Count,Google Gemini,OpenAI,Florence-2 Model,Roboflow Dataset Upload
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Classification Label Visualization in version v1 has.
Bindings
-
input
image(image): The image to visualize on..copy_image(boolean): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions(classification_prediction): Classification predictions from a single-label or multi-label classification model. The block automatically detects the prediction format and handles both types accordingly..color_palette(string): Select a color palette for the visualised elements..palette_size(integer): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..custom_colors(list_of_values): Define a list of custom colors for bounding boxes in HEX format..color_axis(string): Choose how bounding box colors are assigned..text(string): Content to display in text labels. Options: 'Class' (class name only), 'Confidence' (confidence score only, formatted as decimal), or 'Class and Confidence' (both class name and confidence score)..text_position(string): Position for placing labels on the image. Options include: TOP (TOP_LEFT, TOP_CENTER, TOP_RIGHT), CENTER (CENTER_LEFT, CENTER, CENTER_RIGHT), or BOTTOM (BOTTOM_LEFT, BOTTOM_CENTER, BOTTOM_RIGHT). For multi-label predictions, labels are stacked vertically at the chosen position..text_color(string): Color of the label text. Can be a color name (e.g., 'WHITE', 'BLACK') or color code in HEX format (e.g., '#FFFFFF') or RGB format (e.g., 'rgb(255, 255, 255)')..text_scale(float): Scale factor for text size. Higher values create larger text. Default is 1.0..text_thickness(integer): Thickness of text characters in pixels. Higher values create bolder, thicker text for better visibility..text_padding(integer): Padding around the text in pixels. Controls the spacing between the text and the label background border, and the spacing between multiple labels in multi-label predictions..border_radius(integer): Border radius of the label background in pixels. Set to 0 for square corners. Higher values create more rounded corners for a softer appearance..
-
output
image(image): Image in workflows.
Example JSON definition of step Classification Label Visualization in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/classification_label_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.classification_model.predictions",
"color_palette": "DEFAULT",
"palette_size": 10,
"custom_colors": [
"#FF0000",
"#00FF00",
"#0000FF"
],
"color_axis": "CLASS",
"text": "LABEL",
"text_position": "CENTER",
"text_color": "WHITE",
"text_scale": 1.0,
"text_thickness": 1,
"text_padding": 10,
"border_radius": 0
}