Continue If¶
Class: ContinueIfBlockV1
Source: inference.core.workflows.core_steps.flow_control.continue_if.v1.ContinueIfBlockV1
Based on provided configuration, block decides if it should follow to pointed execution path
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/continue_if@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
condition_statement |
StatementGroup |
Define the conditional logic.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Continue If
in version v1
.
- inputs:
Multi-Label Classification Model
,Dimension Collapse
,Classification Label Visualization
,Background Color Visualization
,Dynamic Crop
,Clip Comparison
,Segment Anything 2 Model
,Absolute Static Crop
,LMM For Classification
,Image Blur
,Roboflow Dataset Upload
,CogVLM
,Circle Visualization
,OCR Model
,Clip Comparison
,Template Matching
,SIFT Comparison
,Multi-Label Classification Model
,Path Deviation
,OpenAI
,Stitch OCR Detections
,Detections Stitch
,QR Code Detection
,Pixel Color Count
,Detections Stabilizer
,Path Deviation
,Line Counter
,VLM as Classifier
,Time in Zone
,Model Comparison Visualization
,Stitch Images
,Bounding Box Visualization
,Keypoint Detection Model
,Moondream2
,Continue If
,Color Visualization
,Slack Notification
,LMM
,Llama 3.2 Vision
,Instance Segmentation Model
,VLM as Detector
,Time in Zone
,Byte Tracker
,Detections Filter
,YOLO-World Model
,Barcode Detection
,Grid Visualization
,SmolVLM2
,Stability AI Inpainting
,Cosine Similarity
,Keypoint Detection Model
,Dot Visualization
,Google Gemini
,Detections Merge
,CLIP Embedding Model
,Dynamic Zone
,Size Measurement
,Property Definition
,Roboflow Custom Metadata
,Data Aggregator
,VLM as Classifier
,Detections Classes Replacement
,Gaze Detection
,Object Detection Model
,Corner Visualization
,Roboflow Dataset Upload
,Image Preprocessing
,Image Slicer
,Byte Tracker
,Line Counter
,Label Visualization
,Bounding Rectangle
,Identify Outliers
,Single-Label Classification Model
,First Non Empty Or Default
,Webhook Sink
,Cache Get
,Mask Visualization
,Delta Filter
,Google Vision OCR
,Twilio SMS Notification
,Buffer
,Detection Offset
,Model Monitoring Inference Aggregator
,Florence-2 Model
,Stability AI Image Generation
,Cache Set
,Identify Changes
,Crop Visualization
,JSON Parser
,VLM as Detector
,Velocity
,OpenAI
,Dominant Color
,Perspective Correction
,SIFT Comparison
,Relative Static Crop
,Ellipse Visualization
,Reference Path Visualization
,Anthropic Claude
,Blur Visualization
,Pixelate Visualization
,Email Notification
,Expression
,CSV Formatter
,Keypoint Visualization
,Camera Focus
,Single-Label Classification Model
,Qwen2.5-VL
,Florence-2 Model
,Detections Transformation
,Image Convert Grayscale
,Image Threshold
,Trace Visualization
,Detections Consensus
,Polygon Visualization
,Triangle Visualization
,Environment Secrets Store
,Halo Visualization
,Polygon Zone Visualization
,Local File Sink
,Rate Limiter
,Instance Segmentation Model
,Camera Calibration
,SIFT
,Image Contours
,Line Counter Visualization
,Image Slicer
,Byte Tracker
,Distance Measurement
,Object Detection Model
- outputs: None
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Continue If
in version v1
has.
Bindings
-
input
evaluation_parameters
(*
): Data to be used in the conditional logic..next_steps
(step): Steps to execute if the condition evaluates to true..
-
output
Example JSON definition of step Continue If
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/continue_if@v1",
"condition_statement": {
"statements": [
{
"comparator": {
"type": "(Number) =="
},
"left_operand": {
"operand_name": "left",
"type": "DynamicOperand"
},
"right_operand": {
"type": "StaticOperand",
"value": 1
},
"type": "BinaryStatement"
}
],
"type": "StatementGroup"
},
"evaluation_parameters": {
"left": "$inputs.some"
},
"next_steps": [
"$steps.on_true"
]
}