Corner Visualization¶
Class: CornerVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.corner.v1.CornerVisualizationBlockV1
The CornerVisualization
block draws the corners of detected
objects in an image using Supervision's sv.BoxCornerAnnotator
.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/corner_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
color_palette |
str |
Select a color palette for the visualised elements.. | ✅ |
palette_size |
int |
Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes.. | ✅ |
custom_colors |
List[str] |
Define a list of custom colors for bounding boxes in HEX format.. | ✅ |
color_axis |
str |
Choose how bounding box colors are assigned.. | ✅ |
thickness |
int |
Thickness of the lines in pixels.. | ✅ |
corner_length |
int |
Length of the corner lines in pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Corner Visualization
in version v1
.
- inputs:
Bounding Rectangle
,Image Contours
,Line Counter Visualization
,Keypoint Detection Model
,Florence-2 Model
,Instance Segmentation Model
,Roboflow Dataset Upload
,Gaze Detection
,Webhook Sink
,Camera Calibration
,Time in Zone
,Image Slicer
,LMM
,Model Comparison Visualization
,Perspective Correction
,Dynamic Crop
,JSON Parser
,LMM For Classification
,Roboflow Dataset Upload
,Dynamic Zone
,SIFT
,CogVLM
,Relative Static Crop
,Dot Visualization
,Grid Visualization
,Detections Consensus
,Detections Classes Replacement
,SIFT Comparison
,Slack Notification
,CSV Formatter
,Color Visualization
,Keypoint Visualization
,Mask Visualization
,Byte Tracker
,Object Detection Model
,Single-Label Classification Model
,OCR Model
,Clip Comparison
,Buffer
,Anthropic Claude
,Blur Visualization
,Segment Anything 2 Model
,Path Deviation
,Multi-Label Classification Model
,Florence-2 Model
,YOLO-World Model
,Absolute Static Crop
,Pixelate Visualization
,Corner Visualization
,Detections Transformation
,Local File Sink
,VLM as Detector
,Time in Zone
,Image Threshold
,Twilio SMS Notification
,Path Deviation
,Label Visualization
,OpenAI
,Polygon Visualization
,Pixel Color Count
,VLM as Classifier
,Byte Tracker
,Background Color Visualization
,Roboflow Custom Metadata
,Stitch Images
,Distance Measurement
,Dimension Collapse
,Identify Changes
,Classification Label Visualization
,Stability AI Inpainting
,Camera Focus
,Circle Visualization
,Line Counter
,VLM as Classifier
,Stability AI Image Generation
,VLM as Detector
,Stitch OCR Detections
,Google Vision OCR
,Detections Merge
,Clip Comparison
,Bounding Box Visualization
,Ellipse Visualization
,Instance Segmentation Model
,Keypoint Detection Model
,Reference Path Visualization
,Triangle Visualization
,Byte Tracker
,Template Matching
,Image Convert Grayscale
,Line Counter
,Size Measurement
,Model Monitoring Inference Aggregator
,Object Detection Model
,Image Preprocessing
,Image Blur
,Email Notification
,Google Gemini
,Llama 3.2 Vision
,Crop Visualization
,Image Slicer
,Detection Offset
,Trace Visualization
,Detections Filter
,Halo Visualization
,Detections Stabilizer
,Identify Outliers
,Polygon Zone Visualization
,SIFT Comparison
,Detections Stitch
,Velocity
,OpenAI
- outputs:
Image Contours
,Line Counter Visualization
,Keypoint Detection Model
,Florence-2 Model
,Instance Segmentation Model
,Roboflow Dataset Upload
,Gaze Detection
,Time in Zone
,Camera Calibration
,Image Slicer
,LMM
,Model Comparison Visualization
,Dominant Color
,Dynamic Crop
,Perspective Correction
,LMM For Classification
,Roboflow Dataset Upload
,Multi-Label Classification Model
,SIFT
,CogVLM
,Dot Visualization
,Relative Static Crop
,Qwen2.5-VL
,SIFT Comparison
,Color Visualization
,Object Detection Model
,Clip Comparison
,OCR Model
,Keypoint Visualization
,Buffer
,Single-Label Classification Model
,Mask Visualization
,Anthropic Claude
,Blur Visualization
,Multi-Label Classification Model
,Segment Anything 2 Model
,Florence-2 Model
,YOLO-World Model
,Absolute Static Crop
,Pixelate Visualization
,Corner Visualization
,VLM as Detector
,Image Threshold
,Label Visualization
,Pixel Color Count
,Polygon Visualization
,OpenAI
,VLM as Classifier
,SmolVLM2
,Background Color Visualization
,Stitch Images
,Classification Label Visualization
,Stability AI Inpainting
,Camera Focus
,Circle Visualization
,VLM as Classifier
,QR Code Detection
,Stability AI Image Generation
,VLM as Detector
,Google Vision OCR
,Clip Comparison
,Bounding Box Visualization
,Ellipse Visualization
,Instance Segmentation Model
,Keypoint Detection Model
,Byte Tracker
,Reference Path Visualization
,Template Matching
,Triangle Visualization
,Image Convert Grayscale
,Barcode Detection
,Object Detection Model
,Image Preprocessing
,Image Blur
,Google Gemini
,Llama 3.2 Vision
,Crop Visualization
,Image Slicer
,Single-Label Classification Model
,Trace Visualization
,Halo Visualization
,Detections Stabilizer
,Detections Stitch
,Polygon Zone Visualization
,CLIP Embedding Model
,OpenAI
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Corner Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions
(Union[keypoint_detection_prediction
,instance_segmentation_prediction
,object_detection_prediction
]): Model predictions to visualize..color_palette
(string
): Select a color palette for the visualised elements..palette_size
(integer
): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..custom_colors
(list_of_values
): Define a list of custom colors for bounding boxes in HEX format..color_axis
(string
): Choose how bounding box colors are assigned..thickness
(integer
): Thickness of the lines in pixels..corner_length
(integer
): Length of the corner lines in pixels..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Corner Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/corner_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.object_detection_model.predictions",
"color_palette": "DEFAULT",
"palette_size": 10,
"custom_colors": [
"#FF0000",
"#00FF00",
"#0000FF"
],
"color_axis": "CLASS",
"thickness": 4,
"corner_length": 15
}