Corner Visualization¶
Class: CornerVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.corner.v1.CornerVisualizationBlockV1
The CornerVisualization
block draws the corners of detected
objects in an image using Supervision's sv.BoxCornerAnnotator
.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/corner_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
color_palette |
str |
Select a color palette for the visualised elements.. | ✅ |
palette_size |
int |
Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes.. | ✅ |
custom_colors |
List[str] |
Define a list of custom colors for bounding boxes in HEX format.. | ✅ |
color_axis |
str |
Choose how bounding box colors are assigned.. | ✅ |
thickness |
int |
Thickness of the lines in pixels.. | ✅ |
corner_length |
int |
Length of the corner lines in pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Corner Visualization
in version v1
.
- inputs:
Anthropic Claude
,Crop Visualization
,SIFT
,Line Counter
,Stitch OCR Detections
,Line Counter
,LMM For Classification
,Blur Visualization
,PTZ Tracking (ONVIF)
.md),Line Counter Visualization
,Color Visualization
,Image Contours
,Camera Focus
,Mask Visualization
,Image Convert Grayscale
,Circle Visualization
,Google Gemini
,Absolute Static Crop
,VLM as Classifier
,Object Detection Model
,Dynamic Zone
,Keypoint Detection Model
,Byte Tracker
,Detections Consensus
,Stitch Images
,Trace Visualization
,Detections Filter
,Image Preprocessing
,Roboflow Custom Metadata
,OCR Model
,Object Detection Model
,Bounding Rectangle
,JSON Parser
,Detections Transformation
,Clip Comparison
,Polygon Zone Visualization
,LMM
,QR Code Generator
,YOLO-World Model
,Size Measurement
,Halo Visualization
,Perspective Correction
,Moondream2
,Stability AI Inpainting
,Florence-2 Model
,Buffer
,Template Matching
,Velocity
,Webhook Sink
,Label Visualization
,Distance Measurement
,VLM as Detector
,Pixel Color Count
,Segment Anything 2 Model
,Stability AI Image Generation
,Triangle Visualization
,Keypoint Detection Model
,Background Color Visualization
,Relative Static Crop
,Slack Notification
,Detections Stabilizer
,Corner Visualization
,Byte Tracker
,Path Deviation
,Multi-Label Classification Model
,Icon Visualization
,SIFT Comparison
,Pixelate Visualization
,Image Blur
,Overlap Filter
,Gaze Detection
,Model Comparison Visualization
,VLM as Detector
,CSV Formatter
,Time in Zone
,Instance Segmentation Model
,Llama 3.2 Vision
,Image Threshold
,VLM as Classifier
,Reference Path Visualization
,Google Vision OCR
,Image Slicer
,Roboflow Dataset Upload
,CogVLM
,Byte Tracker
,Identify Outliers
,Depth Estimation
,Roboflow Dataset Upload
,Detection Offset
,Single-Label Classification Model
,OpenAI
,Classification Label Visualization
,Polygon Visualization
,Stability AI Outpainting
,Keypoint Visualization
,Dot Visualization
,Time in Zone
,Email Notification
,Grid Visualization
,Local File Sink
,OpenAI
,Bounding Box Visualization
,Camera Calibration
,Detections Classes Replacement
,Ellipse Visualization
,Detections Merge
,OpenAI
,Florence-2 Model
,Path Deviation
,Model Monitoring Inference Aggregator
,Image Slicer
,Twilio SMS Notification
,SIFT Comparison
,Instance Segmentation Model
,Detections Stitch
,Dimension Collapse
,Identify Changes
,Clip Comparison
,Dynamic Crop
- outputs:
QR Code Detection
,Anthropic Claude
,Crop Visualization
,SIFT
,LMM For Classification
,Blur Visualization
,Line Counter Visualization
,Color Visualization
,Image Contours
,Camera Focus
,Mask Visualization
,Image Convert Grayscale
,Google Gemini
,Circle Visualization
,Absolute Static Crop
,VLM as Classifier
,Object Detection Model
,Multi-Label Classification Model
,Keypoint Detection Model
,Stitch Images
,Trace Visualization
,Image Preprocessing
,Qwen2.5-VL
,OCR Model
,Object Detection Model
,Clip Comparison
,SmolVLM2
,Polygon Zone Visualization
,LMM
,YOLO-World Model
,Halo Visualization
,CLIP Embedding Model
,Florence-2 Model
,Moondream2
,Perspective Correction
,Stability AI Inpainting
,Buffer
,Template Matching
,Label Visualization
,VLM as Detector
,Pixel Color Count
,Segment Anything 2 Model
,Perception Encoder Embedding Model
,Stability AI Image Generation
,Keypoint Detection Model
,Triangle Visualization
,Background Color Visualization
,Relative Static Crop
,Detections Stabilizer
,Corner Visualization
,Multi-Label Classification Model
,Icon Visualization
,Pixelate Visualization
,Image Blur
,Gaze Detection
,Model Comparison Visualization
,VLM as Detector
,Llama 3.2 Vision
,Time in Zone
,Instance Segmentation Model
,Image Threshold
,VLM as Classifier
,Google Vision OCR
,Reference Path Visualization
,Image Slicer
,Roboflow Dataset Upload
,CogVLM
,Byte Tracker
,Barcode Detection
,Depth Estimation
,Roboflow Dataset Upload
,Single-Label Classification Model
,OpenAI
,Classification Label Visualization
,Polygon Visualization
,Stability AI Outpainting
,Keypoint Visualization
,Dot Visualization
,OpenAI
,Single-Label Classification Model
,Bounding Box Visualization
,Camera Calibration
,Ellipse Visualization
,OpenAI
,Florence-2 Model
,Image Slicer
,Instance Segmentation Model
,SIFT Comparison
,Detections Stitch
,Dominant Color
,Clip Comparison
,Dynamic Crop
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Corner Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions
(Union[object_detection_prediction
,instance_segmentation_prediction
,keypoint_detection_prediction
]): Model predictions to visualize..color_palette
(string
): Select a color palette for the visualised elements..palette_size
(integer
): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..custom_colors
(list_of_values
): Define a list of custom colors for bounding boxes in HEX format..color_axis
(string
): Choose how bounding box colors are assigned..thickness
(integer
): Thickness of the lines in pixels..corner_length
(integer
): Length of the corner lines in pixels..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Corner Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/corner_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.object_detection_model.predictions",
"color_palette": "DEFAULT",
"palette_size": 10,
"custom_colors": [
"#FF0000",
"#00FF00",
"#0000FF"
],
"color_axis": "CLASS",
"thickness": 4,
"corner_length": 15
}