Skip to content

Crop Visualization

Class: CropVisualizationBlockV1

Source: inference.core.workflows.core_steps.visualizations.crop.v1.CropVisualizationBlockV1

The CropVisualization block draws scaled up crops of detections on the scene using Supervision's sv.CropAnnotator.

Type identifier

Use the following identifier in step "type" field: roboflow_core/crop_visualization@v1to add the block as as step in your workflow.

Properties

Name Type Description Refs
name str Enter a unique identifier for this step..
copy_image bool Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..
color_palette str Select a color palette for the visualised elements..
palette_size int Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..
custom_colors List[str] Define a list of custom colors for bounding boxes in HEX format..
color_axis str Choose how bounding box colors are assigned..
position str The anchor position for placing the crop..
scale_factor float The factor by which to scale the cropped image part. A factor of 2, for example, would double the size of the cropped area, allowing for a closer view of the detection..
border_thickness int Thickness of the outline in pixels..

The Refs column marks possibility to parametrise the property with dynamic values available in workflow runtime. See Bindings for more info.

Available Connections

Compatible Blocks

Check what blocks you can connect to Crop Visualization in version v1.

Input and Output Bindings

The available connections depend on its binding kinds. Check what binding kinds Crop Visualization in version v1 has.

Bindings
  • input

    • image (image): Select the input image to visualize on..
    • copy_image (boolean): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..
    • predictions (Union[instance_segmentation_prediction, keypoint_detection_prediction, object_detection_prediction]): Predictions.
    • color_palette (string): Select a color palette for the visualised elements..
    • palette_size (integer): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..
    • custom_colors (list_of_values): Define a list of custom colors for bounding boxes in HEX format..
    • color_axis (string): Choose how bounding box colors are assigned..
    • position (string): The anchor position for placing the crop..
    • scale_factor (float): The factor by which to scale the cropped image part. A factor of 2, for example, would double the size of the cropped area, allowing for a closer view of the detection..
    • border_thickness (integer): Thickness of the outline in pixels..
  • output

    • image (image): Image in workflows.
Example JSON definition of step Crop Visualization in version v1
{
    "name": "<your_step_name_here>",
    "type": "roboflow_core/crop_visualization@v1",
    "image": "$inputs.image",
    "copy_image": true,
    "predictions": "$steps.object_detection_model.predictions",
    "color_palette": "DEFAULT",
    "palette_size": 10,
    "custom_colors": [
        "#FF0000",
        "#00FF00",
        "#0000FF"
    ],
    "color_axis": "CLASS",
    "position": "CENTER",
    "scale_factor": 2.0,
    "border_thickness": 2
}