CSV Formatter¶
Class: CSVFormatterBlockV1
Source: inference.core.workflows.core_steps.formatters.csv.v1.CSVFormatterBlockV1
The CSV Formatter block prepares structured CSV content based on specified data configurations within a workflow. It allows users to:
-
choose which data appears as columns
-
apply operations to transform the data within the block
-
aggregate whole batch of data into single CSV document (see Data Aggregation section)
The generated CSV content can be used as input for other blocks, such as File Sink or Email Notifications.
Defining columns¶
Use columns_data
property to specify name of the columns and data sources. Defining UQL operations in
columns_operations
you can perform specific operation on each column.
Timestamp column
The block automatically adds timestamp
column and this column name is reserved and cannot be used.
The value of timestamp would be in the following format: 2024-10-18T14:09:57.622297+00:00
, values
are scaled to UTC time zone.
For example, the following definition
columns_data = {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names",
}
columns_operations = {
"predictions": [
{"type": "DetectionsPropertyExtract", "property_name": "class_name"}
],
}
Will generate CSV content:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
When applied on object detection predictions from a single image, assuming that $inputs.reference_class_names
holds a list of reference classes.
Data Aggregation¶
The block may take input from different blocks, hence its behavior may differ depending on context:
-
data
batch_size=1
: whenever single input is provided - block will provide the output as in the example above - CSV header will be placed in the first row, the second row will hold the data -
data
batch_size>1
: each datapoint will create one row in CSV document, but only the last batch element will be fed with the aggregated output, leaving other batch elements' outputs empty
When should I expect batch_size=1
?¶
You may expect batch_size=1
in the following scenarios:
-
CSV Formatter was connected to the output of block that only operates on one image and produces one prediction
-
CSV Formatter was connected to the output of block that aggregates data for whole batch and produces single non-empty output (which is exactly the characteristics of CSV Formatter itself)
When should I expect batch_size>1
?¶
You may expect batch_size=1
in the following scenarios:
- CSV Formatter was connected to the output of block that produces single prediction for single image, but batch of images were fed - then CSV Formatter will aggregate the CSV content and output it in the position of the last batch element:
--- input_batch[0] ----> ┌───────────────────────┐ ----> <Empty>
--- input_batch[1] ----> │ │ ----> <Empty>
... │ CSV Formatter │ ----> <Empty>
... │ │ ----> <Empty>
--- input_batch[n] ----> └───────────────────────┘ ----> {"csv_content": "..."}
Format of CSV document for batch_size>1
If the example presented above is applied for larger input batch sizes - the output document structure would be as follows:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.436322+00:00","['b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.536322+00:00","['a', 'c']","['a', 'b']"
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/csv_formatter@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
columns_data |
Dict[str, Union[bool, float, int, str]] |
References data to be used to construct each and every column. | ✅ |
columns_operations |
Dict[str, List[Union[ClassificationPropertyExtract, ConvertDictionaryToJSON, ConvertImageToBase64, ConvertImageToJPEG, DetectionsFilter, DetectionsOffset, DetectionsPropertyExtract, DetectionsRename, DetectionsSelection, DetectionsShift, DetectionsToDictionary, Divide, ExtractDetectionProperty, ExtractImageProperty, LookupTable, Multiply, NumberRound, NumericSequenceAggregate, RandomNumber, SequenceAggregate, SequenceApply, SequenceLength, SequenceMap, SortDetections, StringMatches, StringSubSequence, StringToLowerCase, StringToUpperCase, ToBoolean, ToNumber, ToString]]] |
UQL definitions of operations to be performed on defined data w.r.t. each column. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to CSV Formatter
in version v1
.
- inputs:
Property Definition
,Path Deviation
,Pixelate Visualization
,Multi-Label Classification Model
,Stitch Images
,First Non Empty Or Default
,LMM For Classification
,Keypoint Detection Model
,Gaze Detection
,Line Counter
,Instance Segmentation Model
,Rate Limiter
,CLIP Embedding Model
,Blur Visualization
,OCR Model
,Mask Visualization
,Object Detection Model
,Single-Label Classification Model
,SIFT
,Line Counter
,Detections Filter
,YOLO-World Model
,Cache Get
,Model Monitoring Inference Aggregator
,Polygon Visualization
,Halo Visualization
,Environment Secrets Store
,VLM as Detector
,Grid Visualization
,Google Vision OCR
,Email Notification
,Model Comparison Visualization
,Camera Focus
,CogVLM
,Image Threshold
,Byte Tracker
,Keypoint Visualization
,Detections Classes Replacement
,Template Matching
,Data Aggregator
,Image Preprocessing
,Detection Offset
,Roboflow Dataset Upload
,Slack Notification
,Stitch OCR Detections
,Identify Changes
,Relative Static Crop
,Background Color Visualization
,Clip Comparison
,Bounding Box Visualization
,Image Contours
,Ellipse Visualization
,Label Visualization
,Classification Label Visualization
,Line Counter Visualization
,Byte Tracker
,LMM
,Stability AI Inpainting
,Reference Path Visualization
,Twilio SMS Notification
,VLM as Detector
,Dynamic Crop
,Dominant Color
,Byte Tracker
,Triangle Visualization
,Bounding Rectangle
,Absolute Static Crop
,Object Detection Model
,Distance Measurement
,Time in Zone
,Detections Stitch
,Florence-2 Model
,Barcode Detection
,SIFT Comparison
,Keypoint Detection Model
,Corner Visualization
,Perspective Correction
,Cosine Similarity
,Local File Sink
,Polygon Zone Visualization
,VLM as Classifier
,Continue If
,Expression
,Dimension Collapse
,Image Slicer
,Size Measurement
,Detections Consensus
,OpenAI
,Roboflow Custom Metadata
,Trace Visualization
,Webhook Sink
,Cache Set
,Crop Visualization
,Instance Segmentation Model
,Buffer
,Roboflow Dataset Upload
,Clip Comparison
,VLM as Classifier
,Anthropic Claude
,Dynamic Zone
,SIFT Comparison
,Image Blur
,Image Convert Grayscale
,Circle Visualization
,Dot Visualization
,Google Gemini
,QR Code Detection
,Segment Anything 2 Model
,JSON Parser
,Single-Label Classification Model
,Identify Outliers
,Florence-2 Model
,Time in Zone
,Detections Stabilizer
,OpenAI
,Path Deviation
,Delta Filter
,Color Visualization
,Pixel Color Count
,Multi-Label Classification Model
,CSV Formatter
,Llama 3.2 Vision
,Detections Transformation
- outputs:
Path Deviation
,LMM For Classification
,Line Counter
,Instance Segmentation Model
,CLIP Embedding Model
,Mask Visualization
,Line Counter
,YOLO-World Model
,Model Monitoring Inference Aggregator
,Cache Get
,Polygon Visualization
,Halo Visualization
,Google Vision OCR
,Model Comparison Visualization
,Email Notification
,CogVLM
,Image Threshold
,Keypoint Visualization
,Image Preprocessing
,Roboflow Dataset Upload
,Slack Notification
,Background Color Visualization
,Bounding Box Visualization
,Ellipse Visualization
,Classification Label Visualization
,Label Visualization
,Line Counter Visualization
,LMM
,Stability AI Inpainting
,Reference Path Visualization
,Dynamic Crop
,Triangle Visualization
,Distance Measurement
,Time in Zone
,Detections Stitch
,Florence-2 Model
,SIFT Comparison
,Corner Visualization
,Perspective Correction
,Local File Sink
,Polygon Zone Visualization
,Twilio SMS Notification
,Trace Visualization
,Webhook Sink
,Size Measurement
,OpenAI
,Roboflow Custom Metadata
,Cache Set
,Crop Visualization
,Instance Segmentation Model
,Roboflow Dataset Upload
,Clip Comparison
,Anthropic Claude
,Image Blur
,Circle Visualization
,Dot Visualization
,Google Gemini
,Segment Anything 2 Model
,Florence-2 Model
,Time in Zone
,Path Deviation
,OpenAI
,Color Visualization
,Pixel Color Count
,Llama 3.2 Vision
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
CSV Formatter
in version v1
has.
Bindings
Example JSON definition of step CSV Formatter
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/csv_formatter@v1",
"columns_data": {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names"
},
"columns_operations": {
"predictions": [
{
"property_name": "class_name",
"type": "DetectionsPropertyExtract"
}
]
}
}