CSV Formatter¶
Class: CSVFormatterBlockV1
Source: inference.core.workflows.core_steps.formatters.csv.v1.CSVFormatterBlockV1
The CSV Formatter block prepares structured CSV content based on specified data configurations within a workflow. It allows users to:
-
choose which data appears as columns
-
apply operations to transform the data within the block
-
aggregate whole batch of data into single CSV document (see Data Aggregation section)
The generated CSV content can be used as input for other blocks, such as File Sink or Email Notifications.
Defining columns¶
Use columns_data
property to specify name of the columns and data sources. Defining UQL operations in
columns_operations
you can perform specific operation on each column.
Timestamp column
The block automatically adds timestamp
column and this column name is reserved and cannot be used.
The value of timestamp would be in the following format: 2024-10-18T14:09:57.622297+00:00
, values
are scaled to UTC time zone.
For example, the following definition
columns_data = {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names",
}
columns_operations = {
"predictions": [
{"type": "DetectionsPropertyExtract", "property_name": "class_name"}
],
}
Will generate CSV content:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
When applied on object detection predictions from a single image, assuming that $inputs.reference_class_names
holds a list of reference classes.
Data Aggregation¶
The block may take input from different blocks, hence its behavior may differ depending on context:
-
data
batch_size=1
: whenever single input is provided - block will provide the output as in the example above - CSV header will be placed in the first row, the second row will hold the data -
data
batch_size>1
: each datapoint will create one row in CSV document, but only the last batch element will be fed with the aggregated output, leaving other batch elements' outputs empty
When should I expect batch_size=1
?¶
You may expect batch_size=1
in the following scenarios:
-
CSV Formatter was connected to the output of block that only operates on one image and produces one prediction
-
CSV Formatter was connected to the output of block that aggregates data for whole batch and produces single non-empty output (which is exactly the characteristics of CSV Formatter itself)
When should I expect batch_size>1
?¶
You may expect batch_size=1
in the following scenarios:
- CSV Formatter was connected to the output of block that produces single prediction for single image, but batch of images were fed - then CSV Formatter will aggregate the CSV content and output it in the position of the last batch element:
--- input_batch[0] ----> ┌───────────────────────┐ ----> <Empty>
--- input_batch[1] ----> │ │ ----> <Empty>
... │ CSV Formatter │ ----> <Empty>
... │ │ ----> <Empty>
--- input_batch[n] ----> └───────────────────────┘ ----> {"csv_content": "..."}
Format of CSV document for batch_size>1
If the example presented above is applied for larger input batch sizes - the output document structure would be as follows:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.436322+00:00","['b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.536322+00:00","['a', 'c']","['a', 'b']"
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/csv_formatter@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
columns_data |
Dict[str, Union[bool, float, int, str]] |
References data to be used to construct each and every column. | ✅ |
columns_operations |
Dict[str, List[Union[ClassificationPropertyExtract, ConvertDictionaryToJSON, ConvertImageToBase64, ConvertImageToJPEG, DetectionsFilter, DetectionsOffset, DetectionsPropertyExtract, DetectionsRename, DetectionsSelection, DetectionsShift, DetectionsToDictionary, Divide, ExtractDetectionProperty, ExtractImageProperty, LookupTable, Multiply, NumberRound, NumericSequenceAggregate, PickDetectionsByParentClass, RandomNumber, SequenceAggregate, SequenceApply, SequenceElementsCount, SequenceLength, SequenceMap, SortDetections, StringMatches, StringSubSequence, StringToLowerCase, StringToUpperCase, ToBoolean, ToNumber, ToString]]] |
UQL definitions of operations to be performed on defined data w.r.t. each column. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to CSV Formatter
in version v1
.
- inputs:
Corner Visualization
,Slack Notification
,VLM as Detector
,VLM as Classifier
,Polygon Zone Visualization
,Image Slicer
,Cache Set
,Dot Visualization
,Path Deviation
,Roboflow Dataset Upload
,Single-Label Classification Model
,Image Convert Grayscale
,Dominant Color
,Stability AI Image Generation
,Halo Visualization
,Data Aggregator
,Detections Classes Replacement
,Dynamic Zone
,CogVLM
,Camera Calibration
,Email Notification
,Object Detection Model
,Cosine Similarity
,Single-Label Classification Model
,Llama 3.2 Vision
,Byte Tracker
,Ellipse Visualization
,Pixel Color Count
,Size Measurement
,Bounding Box Visualization
,Line Counter Visualization
,Image Preprocessing
,Label Visualization
,Local File Sink
,Image Slicer
,Detections Transformation
,Anthropic Claude
,Crop Visualization
,Detections Stitch
,OCR Model
,Relative Static Crop
,Model Comparison Visualization
,QR Code Detection
,Delta Filter
,Path Deviation
,Detections Filter
,Clip Comparison
,Time in Zone
,CSV Formatter
,Florence-2 Model
,Keypoint Detection Model
,Buffer
,SIFT Comparison
,Florence-2 Model
,Multi-Label Classification Model
,Rate Limiter
,Keypoint Visualization
,Identify Changes
,Multi-Label Classification Model
,Roboflow Custom Metadata
,Line Counter
,Stitch Images
,Circle Visualization
,Background Color Visualization
,Twilio SMS Notification
,Property Definition
,LMM
,Camera Focus
,Image Blur
,First Non Empty Or Default
,Detections Merge
,Google Gemini
,Detection Offset
,Stability AI Inpainting
,Pixelate Visualization
,Line Counter
,OpenAI
,Detections Consensus
,Distance Measurement
,Gaze Detection
,Absolute Static Crop
,Webhook Sink
,Color Visualization
,Image Threshold
,Polygon Visualization
,VLM as Classifier
,Continue If
,Instance Segmentation Model
,Environment Secrets Store
,Classification Label Visualization
,Google Vision OCR
,Roboflow Dataset Upload
,Expression
,Cache Get
,JSON Parser
,Object Detection Model
,Keypoint Detection Model
,Trace Visualization
,Clip Comparison
,Identify Outliers
,YOLO-World Model
,Stitch OCR Detections
,Perspective Correction
,Byte Tracker
,OpenAI
,Qwen2.5-VL
,Mask Visualization
,Time in Zone
,Dynamic Crop
,Template Matching
,Barcode Detection
,Byte Tracker
,Instance Segmentation Model
,Image Contours
,SIFT
,Reference Path Visualization
,CLIP Embedding Model
,Model Monitoring Inference Aggregator
,Bounding Rectangle
,Triangle Visualization
,Velocity
,SIFT Comparison
,VLM as Detector
,LMM For Classification
,Grid Visualization
,Segment Anything 2 Model
,Detections Stabilizer
,Dimension Collapse
,Blur Visualization
- outputs:
Circle Visualization
,Background Color Visualization
,Corner Visualization
,Twilio SMS Notification
,Slack Notification
,LMM
,Polygon Zone Visualization
,Image Blur
,Cache Set
,Dot Visualization
,Path Deviation
,Google Gemini
,Roboflow Dataset Upload
,Stability AI Inpainting
,Line Counter
,OpenAI
,Distance Measurement
,Stability AI Image Generation
,Webhook Sink
,Color Visualization
,Image Threshold
,Halo Visualization
,Polygon Visualization
,CogVLM
,Instance Segmentation Model
,Email Notification
,Classification Label Visualization
,Llama 3.2 Vision
,Google Vision OCR
,Roboflow Dataset Upload
,Ellipse Visualization
,Size Measurement
,Pixel Color Count
,Cache Get
,Bounding Box Visualization
,Line Counter Visualization
,Image Preprocessing
,Trace Visualization
,Label Visualization
,Local File Sink
,Anthropic Claude
,Crop Visualization
,Detections Stitch
,YOLO-World Model
,Model Comparison Visualization
,Perspective Correction
,OpenAI
,Path Deviation
,Mask Visualization
,Time in Zone
,Clip Comparison
,Time in Zone
,Dynamic Crop
,Florence-2 Model
,Instance Segmentation Model
,Florence-2 Model
,Reference Path Visualization
,CLIP Embedding Model
,Triangle Visualization
,Model Monitoring Inference Aggregator
,SIFT Comparison
,Keypoint Visualization
,LMM For Classification
,Roboflow Custom Metadata
,Line Counter
,Segment Anything 2 Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
CSV Formatter
in version v1
has.
Bindings
Example JSON definition of step CSV Formatter
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/csv_formatter@v1",
"columns_data": {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names"
},
"columns_operations": {
"predictions": [
{
"property_name": "class_name",
"type": "DetectionsPropertyExtract"
}
]
}
}