CSV Formatter¶
Class: CSVFormatterBlockV1
Source: inference.core.workflows.core_steps.formatters.csv.v1.CSVFormatterBlockV1
The CSV Formatter block prepares structured CSV content based on specified data configurations within a workflow. It allows users to:
-
choose which data appears as columns
-
apply operations to transform the data within the block
-
aggregate whole batch of data into single CSV document (see Data Aggregation section)
The generated CSV content can be used as input for other blocks, such as File Sink or Email Notifications.
Defining columns¶
Use columns_data property to specify name of the columns and data sources. Defining UQL operations in
columns_operations you can perform specific operation on each column.
Timestamp column
The block automatically adds timestamp column and this column name is reserved and cannot be used.
The value of timestamp would be in the following format: 2024-10-18T14:09:57.622297+00:00, values
are scaled to UTC time zone.
For example, the following definition
columns_data = {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names",
}
columns_operations = {
"predictions": [
{"type": "DetectionsPropertyExtract", "property_name": "class_name"}
],
}
Will generate CSV content:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
When applied on object detection predictions from a single image, assuming that $inputs.reference_class_names
holds a list of reference classes.
Data Aggregation¶
The block may take input from different blocks, hence its behavior may differ depending on context:
-
data
batch_size=1: whenever single input is provided - block will provide the output as in the example above - CSV header will be placed in the first row, the second row will hold the data -
data
batch_size>1: each datapoint will create one row in CSV document, but only the last batch element will be fed with the aggregated output, leaving other batch elements' outputs empty
When should I expect batch_size=1?¶
You may expect batch_size=1 in the following scenarios:
-
CSV Formatter was connected to the output of block that only operates on one image and produces one prediction
-
CSV Formatter was connected to the output of block that aggregates data for whole batch and produces single non-empty output (which is exactly the characteristics of CSV Formatter itself)
When should I expect batch_size>1?¶
You may expect batch_size=1 in the following scenarios:
- CSV Formatter was connected to the output of block that produces single prediction for single image, but batch of images were fed - then CSV Formatter will aggregate the CSV content and output it in the position of the last batch element:
--- input_batch[0] ----> ┌───────────────────────┐ ----> <Empty>
--- input_batch[1] ----> │ │ ----> <Empty>
... │ CSV Formatter │ ----> <Empty>
... │ │ ----> <Empty>
--- input_batch[n] ----> └───────────────────────┘ ----> {"csv_content": "..."}
Format of CSV document for batch_size>1
If the example presented above is applied for larger input batch sizes - the output document structure would be as follows:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.436322+00:00","['b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.536322+00:00","['a', 'c']","['a', 'b']"
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/csv_formatter@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
columns_data |
Dict[str, Union[bool, float, int, str]] |
References data to be used to construct each and every column. | ✅ |
columns_operations |
Dict[str, List[Union[ClassificationPropertyExtract, ConvertDictionaryToJSON, ConvertImageToBase64, ConvertImageToJPEG, DetectionsFilter, DetectionsOffset, DetectionsPropertyExtract, DetectionsRename, DetectionsSelection, DetectionsShift, DetectionsToDictionary, Divide, ExtractDetectionProperty, ExtractFrameMetadata, ExtractImageProperty, LookupTable, Multiply, NumberRound, NumericSequenceAggregate, PickDetectionsByParentClass, RandomNumber, SequenceAggregate, SequenceApply, SequenceElementsCount, SequenceLength, SequenceMap, SortDetections, StringMatches, StringSubSequence, StringToLowerCase, StringToUpperCase, TimestampToISOFormat, ToBoolean, ToNumber, ToString]]] |
UQL definitions of operations to be performed on defined data w.r.t. each column. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to CSV Formatter in version v1.
- inputs:
Label Visualization,Blur Visualization,Background Color Visualization,Contrast Equalization,Detections Filter,Reference Path Visualization,Stability AI Outpainting,Image Slicer,Pixelate Visualization,Single-Label Classification Model,Clip Comparison,CSV Formatter,Perception Encoder Embedding Model,Seg Preview,Overlap Filter,Image Preprocessing,Rate Limiter,Color Visualization,SIFT Comparison,Email Notification,Cache Set,Dominant Color,Property Definition,Circle Visualization,Object Detection Model,QR Code Detection,Moondream2,VLM as Classifier,Model Monitoring Inference Aggregator,OCR Model,Absolute Static Crop,Path Deviation,LMM,Time in Zone,Morphological Transformation,Gaze Detection,Detections Consensus,Crop Visualization,OpenAI,Florence-2 Model,Barcode Detection,Classification Label Visualization,Byte Tracker,Segment Anything 2 Model,Cosine Similarity,SIFT Comparison,Time in Zone,YOLO-World Model,PTZ Tracking (ONVIF).md),Detection Offset,Icon Visualization,Detections Transformation,Distance Measurement,Data Aggregator,VLM as Detector,Line Counter Visualization,Grid Visualization,Halo Visualization,Size Measurement,Dynamic Zone,Time in Zone,Twilio SMS Notification,Detections Stitch,Llama 3.2 Vision,Image Blur,Velocity,Slack Notification,Byte Tracker,OpenAI,First Non Empty Or Default,Multi-Label Classification Model,Image Slicer,OpenAI,Environment Secrets Store,Dynamic Crop,Pixel Color Count,Detections Merge,Mask Visualization,Stitch Images,SIFT,Google Vision OCR,LMM For Classification,Keypoint Visualization,Bounding Box Visualization,SAM 3,Byte Tracker,SAM 3,Qwen2.5-VL,Object Detection Model,Path Deviation,Detections Combine,Anthropic Claude,Image Contours,Polygon Zone Visualization,Ellipse Visualization,Line Counter,Clip Comparison,Email Notification,Expression,Depth Estimation,Roboflow Dataset Upload,Image Convert Grayscale,CogVLM,Roboflow Custom Metadata,SAM 3,VLM as Detector,Multi-Label Classification Model,Buffer,Stitch OCR Detections,Keypoint Detection Model,Bounding Rectangle,Keypoint Detection Model,Line Counter,JSON Parser,Camera Calibration,CLIP Embedding Model,Polygon Visualization,Detections Classes Replacement,Cache Get,Identify Changes,Triangle Visualization,Template Matching,Roboflow Dataset Upload,Anthropic Claude,Model Comparison Visualization,Corner Visualization,Florence-2 Model,Google Gemini,Google Gemini,EasyOCR,Delta Filter,SmolVLM2,Stability AI Image Generation,Identify Outliers,QR Code Generator,Relative Static Crop,Dot Visualization,Dimension Collapse,Continue If,Local File Sink,Instance Segmentation Model,Stability AI Inpainting,Single-Label Classification Model,Camera Focus,Detections Stabilizer,Webhook Sink,Image Threshold,Instance Segmentation Model,Perspective Correction,OpenAI,VLM as Classifier,Trace Visualization - outputs:
Google Vision OCR,Label Visualization,LMM For Classification,Background Color Visualization,Contrast Equalization,Reference Path Visualization,Keypoint Visualization,Stability AI Outpainting,Bounding Box Visualization,SAM 3,Perception Encoder Embedding Model,Seg Preview,Image Preprocessing,SAM 3,Color Visualization,SIFT Comparison,Path Deviation,Email Notification,Cache Set,Anthropic Claude,Circle Visualization,Polygon Zone Visualization,Ellipse Visualization,Line Counter,Email Notification,Clip Comparison,Moondream2,Model Monitoring Inference Aggregator,Path Deviation,LMM,Time in Zone,Morphological Transformation,Roboflow Dataset Upload,Crop Visualization,OpenAI,Florence-2 Model,SAM 3,CogVLM,Roboflow Custom Metadata,Classification Label Visualization,Stitch OCR Detections,Segment Anything 2 Model,Time in Zone,Line Counter,YOLO-World Model,Polygon Visualization,PTZ Tracking (ONVIF).md),CLIP Embedding Model,Detections Classes Replacement,Icon Visualization,Cache Get,Triangle Visualization,Roboflow Dataset Upload,Anthropic Claude,Model Comparison Visualization,Florence-2 Model,Distance Measurement,Corner Visualization,Google Gemini,Google Gemini,Line Counter Visualization,Halo Visualization,Size Measurement,Stability AI Image Generation,QR Code Generator,Twilio SMS Notification,Time in Zone,Dot Visualization,Detections Stitch,Llama 3.2 Vision,Image Blur,Slack Notification,OpenAI,Local File Sink,Instance Segmentation Model,OpenAI,Stability AI Inpainting,Dynamic Crop,Pixel Color Count,Webhook Sink,Instance Segmentation Model,Image Threshold,Mask Visualization,OpenAI,Perspective Correction,Trace Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
CSV Formatter in version v1 has.
Bindings
Example JSON definition of step CSV Formatter in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/csv_formatter@v1",
"columns_data": {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names"
},
"columns_operations": {
"predictions": [
{
"property_name": "class_name",
"type": "DetectionsPropertyExtract"
}
]
}
}