CSV Formatter¶
Class: CSVFormatterBlockV1
Source: inference.core.workflows.core_steps.formatters.csv.v1.CSVFormatterBlockV1
The CSV Formatter block prepares structured CSV content based on specified data configurations within a workflow. It allows users to:
-
choose which data appears as columns
-
apply operations to transform the data within the block
-
aggregate whole batch of data into single CSV document (see Data Aggregation section)
The generated CSV content can be used as input for other blocks, such as File Sink or Email Notifications.
Defining columns¶
Use columns_data
property to specify name of the columns and data sources. Defining UQL operations in
columns_operations
you can perform specific operation on each column.
Timestamp column
The block automatically adds timestamp
column and this column name is reserved and cannot be used.
The value of timestamp would be in the following format: 2024-10-18T14:09:57.622297+00:00
, values
are scaled to UTC time zone.
For example, the following definition
columns_data = {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names",
}
columns_operations = {
"predictions": [
{"type": "DetectionsPropertyExtract", "property_name": "class_name"}
],
}
Will generate CSV content:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
When applied on object detection predictions from a single image, assuming that $inputs.reference_class_names
holds a list of reference classes.
Data Aggregation¶
The block may take input from different blocks, hence its behavior may differ depending on context:
-
data
batch_size=1
: whenever single input is provided - block will provide the output as in the example above - CSV header will be placed in the first row, the second row will hold the data -
data
batch_size>1
: each datapoint will create one row in CSV document, but only the last batch element will be fed with the aggregated output, leaving other batch elements' outputs empty
When should I expect batch_size=1
?¶
You may expect batch_size=1
in the following scenarios:
-
CSV Formatter was connected to the output of block that only operates on one image and produces one prediction
-
CSV Formatter was connected to the output of block that aggregates data for whole batch and produces single non-empty output (which is exactly the characteristics of CSV Formatter itself)
When should I expect batch_size>1
?¶
You may expect batch_size=1
in the following scenarios:
- CSV Formatter was connected to the output of block that produces single prediction for single image, but batch of images were fed - then CSV Formatter will aggregate the CSV content and output it in the position of the last batch element:
--- input_batch[0] ----> ┌───────────────────────┐ ----> <Empty>
--- input_batch[1] ----> │ │ ----> <Empty>
... │ CSV Formatter │ ----> <Empty>
... │ │ ----> <Empty>
--- input_batch[n] ----> └───────────────────────┘ ----> {"csv_content": "..."}
Format of CSV document for batch_size>1
If the example presented above is applied for larger input batch sizes - the output document structure would be as follows:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.436322+00:00","['b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.536322+00:00","['a', 'c']","['a', 'b']"
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/csv_formatter@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
columns_data |
Dict[str, Union[bool, float, int, str]] |
References data to be used to construct each and every column. | ✅ |
columns_operations |
Dict[str, List[Union[ClassificationPropertyExtract, ConvertDictionaryToJSON, ConvertImageToBase64, ConvertImageToJPEG, DetectionsFilter, DetectionsOffset, DetectionsPropertyExtract, DetectionsRename, DetectionsSelection, DetectionsShift, DetectionsToDictionary, Divide, ExtractDetectionProperty, ExtractFrameMetadata, ExtractImageProperty, LookupTable, Multiply, NumberRound, NumericSequenceAggregate, PickDetectionsByParentClass, RandomNumber, SequenceAggregate, SequenceApply, SequenceElementsCount, SequenceLength, SequenceMap, SortDetections, StringMatches, StringSubSequence, StringToLowerCase, StringToUpperCase, TimestampToISOFormat, ToBoolean, ToNumber, ToString]]] |
UQL definitions of operations to be performed on defined data w.r.t. each column. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to CSV Formatter
in version v1
.
- inputs:
PTZ Tracking (ONVIF)
.md),Perception Encoder Embedding Model
,SIFT
,Cache Set
,Dimension Collapse
,Detections Stitch
,Color Visualization
,Perspective Correction
,Path Deviation
,Model Monitoring Inference Aggregator
,Image Slicer
,Model Comparison Visualization
,Clip Comparison
,Stitch Images
,Dynamic Crop
,Moondream2
,Webhook Sink
,Pixelate Visualization
,Llama 3.2 Vision
,Camera Calibration
,Line Counter
,Reference Path Visualization
,Image Blur
,Time in Zone
,Blur Visualization
,Environment Secrets Store
,Ellipse Visualization
,Trace Visualization
,Corner Visualization
,Polygon Zone Visualization
,Single-Label Classification Model
,Delta Filter
,Email Notification
,Object Detection Model
,Byte Tracker
,Dot Visualization
,Label Visualization
,Cosine Similarity
,Detections Filter
,Stitch OCR Detections
,Image Preprocessing
,SIFT Comparison
,JSON Parser
,Mask Visualization
,Data Aggregator
,Dominant Color
,Florence-2 Model
,Roboflow Dataset Upload
,Byte Tracker
,First Non Empty Or Default
,Rate Limiter
,Instance Segmentation Model
,Background Color Visualization
,Line Counter
,Keypoint Visualization
,Property Definition
,Multi-Label Classification Model
,VLM as Detector
,YOLO-World Model
,OpenAI
,VLM as Detector
,Bounding Rectangle
,Keypoint Detection Model
,Circle Visualization
,Roboflow Dataset Upload
,Gaze Detection
,Roboflow Custom Metadata
,Depth Estimation
,Florence-2 Model
,Buffer
,Single-Label Classification Model
,Template Matching
,Dynamic Zone
,Grid Visualization
,Instance Segmentation Model
,CSV Formatter
,Detections Consensus
,Overlap Filter
,Object Detection Model
,Identify Outliers
,OpenAI
,Keypoint Detection Model
,Image Contours
,Continue If
,Byte Tracker
,SIFT Comparison
,Local File Sink
,Cache Get
,Expression
,CLIP Embedding Model
,OCR Model
,Velocity
,SmolVLM2
,Camera Focus
,Detections Classes Replacement
,Google Gemini
,OpenAI
,Triangle Visualization
,Stability AI Inpainting
,Detections Transformation
,Classification Label Visualization
,Barcode Detection
,Bounding Box Visualization
,Distance Measurement
,Detections Merge
,Detections Stabilizer
,CogVLM
,Image Convert Grayscale
,Halo Visualization
,LMM
,Polygon Visualization
,Absolute Static Crop
,Slack Notification
,Stability AI Outpainting
,Crop Visualization
,Google Vision OCR
,Stability AI Image Generation
,Detection Offset
,Image Threshold
,Pixel Color Count
,VLM as Classifier
,Identify Changes
,Time in Zone
,Twilio SMS Notification
,Segment Anything 2 Model
,Clip Comparison
,QR Code Detection
,Line Counter Visualization
,Path Deviation
,VLM as Classifier
,Anthropic Claude
,LMM For Classification
,Multi-Label Classification Model
,Image Slicer
,Qwen2.5-VL
,Size Measurement
,Relative Static Crop
- outputs:
YOLO-World Model
,OpenAI
,Circle Visualization
,Roboflow Dataset Upload
,PTZ Tracking (ONVIF)
.md),Roboflow Custom Metadata
,Perception Encoder Embedding Model
,Florence-2 Model
,Cache Set
,Detections Stitch
,Instance Segmentation Model
,Color Visualization
,Perspective Correction
,Path Deviation
,Model Monitoring Inference Aggregator
,OpenAI
,Model Comparison Visualization
,Clip Comparison
,Dynamic Crop
,Moondream2
,Webhook Sink
,Llama 3.2 Vision
,Line Counter
,Reference Path Visualization
,Local File Sink
,Time in Zone
,Image Blur
,Cache Get
,CLIP Embedding Model
,Ellipse Visualization
,Trace Visualization
,Corner Visualization
,Google Gemini
,Detections Classes Replacement
,Polygon Zone Visualization
,OpenAI
,Triangle Visualization
,Stability AI Inpainting
,Classification Label Visualization
,Bounding Box Visualization
,Distance Measurement
,CogVLM
,Halo Visualization
,LMM
,Email Notification
,Polygon Visualization
,Slack Notification
,Dot Visualization
,Label Visualization
,Stability AI Outpainting
,Crop Visualization
,Google Vision OCR
,Stability AI Image Generation
,Image Threshold
,Pixel Color Count
,Image Preprocessing
,SIFT Comparison
,Mask Visualization
,Time in Zone
,Twilio SMS Notification
,Segment Anything 2 Model
,Florence-2 Model
,Roboflow Dataset Upload
,Line Counter Visualization
,Path Deviation
,Anthropic Claude
,Instance Segmentation Model
,LMM For Classification
,Background Color Visualization
,Line Counter
,Keypoint Visualization
,Size Measurement
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
CSV Formatter
in version v1
has.
Bindings
Example JSON definition of step CSV Formatter
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/csv_formatter@v1",
"columns_data": {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names"
},
"columns_operations": {
"predictions": [
{
"property_name": "class_name",
"type": "DetectionsPropertyExtract"
}
]
}
}