CSV Formatter¶
Class: CSVFormatterBlockV1
Source: inference.core.workflows.core_steps.formatters.csv.v1.CSVFormatterBlockV1
The CSV Formatter block prepares structured CSV content based on specified data configurations within a workflow. It allows users to:
-
choose which data appears as columns
-
apply operations to transform the data within the block
-
aggregate whole batch of data into single CSV document (see Data Aggregation section)
The generated CSV content can be used as input for other blocks, such as File Sink or Email Notifications.
Defining columns¶
Use columns_data
property to specify name of the columns and data sources. Defining UQL operations in
columns_operations
you can perform specific operation on each column.
Timestamp column
The block automatically adds timestamp
column and this column name is reserved and cannot be used.
The value of timestamp would be in the following format: 2024-10-18T14:09:57.622297+00:00
, values
are scaled to UTC time zone.
For example, the following definition
columns_data = {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names",
}
columns_operations = {
"predictions": [
{"type": "DetectionsPropertyExtract", "property_name": "class_name"}
],
}
Will generate CSV content:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
When applied on object detection predictions from a single image, assuming that $inputs.reference_class_names
holds a list of reference classes.
Data Aggregation¶
The block may take input from different blocks, hence its behavior may differ depending on context:
-
data
batch_size=1
: whenever single input is provided - block will provide the output as in the example above - CSV header will be placed in the first row, the second row will hold the data -
data
batch_size>1
: each datapoint will create one row in CSV document, but only the last batch element will be fed with the aggregated output, leaving other batch elements' outputs empty
When should I expect batch_size=1
?¶
You may expect batch_size=1
in the following scenarios:
-
CSV Formatter was connected to the output of block that only operates on one image and produces one prediction
-
CSV Formatter was connected to the output of block that aggregates data for whole batch and produces single non-empty output (which is exactly the characteristics of CSV Formatter itself)
When should I expect batch_size>1
?¶
You may expect batch_size=1
in the following scenarios:
- CSV Formatter was connected to the output of block that produces single prediction for single image, but batch of images were fed - then CSV Formatter will aggregate the CSV content and output it in the position of the last batch element:
--- input_batch[0] ----> ┌───────────────────────┐ ----> <Empty>
--- input_batch[1] ----> │ │ ----> <Empty>
... │ CSV Formatter │ ----> <Empty>
... │ │ ----> <Empty>
--- input_batch[n] ----> └───────────────────────┘ ----> {"csv_content": "..."}
Format of CSV document for batch_size>1
If the example presented above is applied for larger input batch sizes - the output document structure would be as follows:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.436322+00:00","['b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.536322+00:00","['a', 'c']","['a', 'b']"
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/csv_formatter@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
columns_data |
Dict[str, Union[bool, float, int, str]] |
References data to be used to construct each and every column. | ✅ |
columns_operations |
Dict[str, List[Union[ClassificationPropertyExtract, ConvertDictionaryToJSON, ConvertImageToBase64, ConvertImageToJPEG, DetectionsFilter, DetectionsOffset, DetectionsPropertyExtract, DetectionsRename, DetectionsSelection, DetectionsShift, DetectionsToDictionary, Divide, ExtractDetectionProperty, ExtractFrameMetadata, ExtractImageProperty, LookupTable, Multiply, NumberRound, NumericSequenceAggregate, PickDetectionsByParentClass, RandomNumber, SequenceAggregate, SequenceApply, SequenceElementsCount, SequenceLength, SequenceMap, SortDetections, StringMatches, StringSubSequence, StringToLowerCase, StringToUpperCase, TimestampToISOFormat, ToBoolean, ToNumber, ToString]]] |
UQL definitions of operations to be performed on defined data w.r.t. each column. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to CSV Formatter
in version v1
.
- inputs:
Model Monitoring Inference Aggregator
,Label Visualization
,Florence-2 Model
,Triangle Visualization
,Image Blur
,OCR Model
,Detections Transformation
,Line Counter Visualization
,Circle Visualization
,Relative Static Crop
,Detections Stitch
,Trace Visualization
,Byte Tracker
,Object Detection Model
,Clip Comparison
,Detection Offset
,Detections Consensus
,Velocity
,Dominant Color
,Stitch Images
,Bounding Rectangle
,Detections Filter
,Cosine Similarity
,Segment Anything 2 Model
,Roboflow Custom Metadata
,Single-Label Classification Model
,VLM as Classifier
,Local File Sink
,Crop Visualization
,Color Visualization
,Image Slicer
,Google Gemini
,Dynamic Crop
,Multi-Label Classification Model
,Continue If
,Instance Segmentation Model
,Keypoint Detection Model
,SmolVLM2
,Google Vision OCR
,Corner Visualization
,Overlap Filter
,Polygon Zone Visualization
,Byte Tracker
,Camera Focus
,Grid Visualization
,Perspective Correction
,Stability AI Image Generation
,Cache Get
,Image Slicer
,CSV Formatter
,OpenAI
,Blur Visualization
,Time in Zone
,Slack Notification
,SIFT Comparison
,Pixel Color Count
,Detections Stabilizer
,Anthropic Claude
,QR Code Detection
,Buffer
,Bounding Box Visualization
,Distance Measurement
,Twilio SMS Notification
,Email Notification
,Object Detection Model
,LMM For Classification
,SIFT Comparison
,VLM as Detector
,LMM
,Florence-2 Model
,Depth Estimation
,CogVLM
,Model Comparison Visualization
,Cache Set
,First Non Empty Or Default
,Data Aggregator
,Barcode Detection
,Environment Secrets Store
,Multi-Label Classification Model
,Path Deviation
,Rate Limiter
,Dimension Collapse
,Gaze Detection
,Reference Path Visualization
,Llama 3.2 Vision
,Expression
,Detections Merge
,Polygon Visualization
,Roboflow Dataset Upload
,Time in Zone
,Identify Outliers
,SIFT
,Image Threshold
,Path Deviation
,Property Definition
,CLIP Embedding Model
,Keypoint Visualization
,Ellipse Visualization
,JSON Parser
,OpenAI
,Instance Segmentation Model
,Dot Visualization
,Roboflow Dataset Upload
,Keypoint Detection Model
,Stability AI Inpainting
,Line Counter
,Identify Changes
,Single-Label Classification Model
,Template Matching
,Background Color Visualization
,Delta Filter
,VLM as Detector
,Line Counter
,Qwen2.5-VL
,Clip Comparison
,Dynamic Zone
,Classification Label Visualization
,Image Convert Grayscale
,Image Preprocessing
,Byte Tracker
,OpenAI
,YOLO-World Model
,Stability AI Outpainting
,Perception Encoder Embedding Model
,Size Measurement
,Webhook Sink
,Moondream2
,Camera Calibration
,Mask Visualization
,Pixelate Visualization
,Stitch OCR Detections
,PTZ Tracking (ONVIF)
.md),Image Contours
,Detections Classes Replacement
,Absolute Static Crop
,Halo Visualization
,VLM as Classifier
- outputs:
Florence-2 Model
,Model Monitoring Inference Aggregator
,Label Visualization
,Florence-2 Model
,CogVLM
,Triangle Visualization
,Image Blur
,Model Comparison Visualization
,Cache Set
,Line Counter Visualization
,Circle Visualization
,Detections Stitch
,Trace Visualization
,Path Deviation
,Reference Path Visualization
,Llama 3.2 Vision
,Polygon Visualization
,Roboflow Dataset Upload
,Time in Zone
,Segment Anything 2 Model
,Roboflow Custom Metadata
,Image Threshold
,Path Deviation
,CLIP Embedding Model
,Keypoint Visualization
,Local File Sink
,Ellipse Visualization
,Crop Visualization
,Color Visualization
,Google Gemini
,Dynamic Crop
,OpenAI
,Instance Segmentation Model
,Dot Visualization
,Instance Segmentation Model
,Roboflow Dataset Upload
,Stability AI Inpainting
,Line Counter
,Google Vision OCR
,Corner Visualization
,Background Color Visualization
,Polygon Zone Visualization
,Stability AI Image Generation
,Perspective Correction
,Cache Get
,Line Counter
,OpenAI
,Clip Comparison
,Classification Label Visualization
,Time in Zone
,Image Preprocessing
,Slack Notification
,SIFT Comparison
,OpenAI
,Pixel Color Count
,YOLO-World Model
,Stability AI Outpainting
,Perception Encoder Embedding Model
,Anthropic Claude
,Size Measurement
,Webhook Sink
,Mask Visualization
,Bounding Box Visualization
,Distance Measurement
,Twilio SMS Notification
,Email Notification
,PTZ Tracking (ONVIF)
.md),Detections Classes Replacement
,Halo Visualization
,LMM For Classification
,LMM
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
CSV Formatter
in version v1
has.
Bindings
Example JSON definition of step CSV Formatter
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/csv_formatter@v1",
"columns_data": {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names"
},
"columns_operations": {
"predictions": [
{
"property_name": "class_name",
"type": "DetectionsPropertyExtract"
}
]
}
}