CSV Formatter¶
Class: CSVFormatterBlockV1
Source: inference.core.workflows.core_steps.formatters.csv.v1.CSVFormatterBlockV1
The CSV Formatter block prepares structured CSV content based on specified data configurations within a workflow. It allows users to:
-
choose which data appears as columns
-
apply operations to transform the data within the block
-
aggregate whole batch of data into single CSV document (see Data Aggregation section)
The generated CSV content can be used as input for other blocks, such as File Sink or Email Notifications.
Defining columns¶
Use columns_data
property to specify name of the columns and data sources. Defining UQL operations in
columns_operations
you can perform specific operation on each column.
Timestamp column
The block automatically adds timestamp
column and this column name is reserved and cannot be used.
The value of timestamp would be in the following format: 2024-10-18T14:09:57.622297+00:00
, values
are scaled to UTC time zone.
For example, the following definition
columns_data = {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names",
}
columns_operations = {
"predictions": [
{"type": "DetectionsPropertyExtract", "property_name": "class_name"}
],
}
Will generate CSV content:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
When applied on object detection predictions from a single image, assuming that $inputs.reference_class_names
holds a list of reference classes.
Data Aggregation¶
The block may take input from different blocks, hence its behavior may differ depending on context:
-
data
batch_size=1
: whenever single input is provided - block will provide the output as in the example above - CSV header will be placed in the first row, the second row will hold the data -
data
batch_size>1
: each datapoint will create one row in CSV document, but only the last batch element will be fed with the aggregated output, leaving other batch elements' outputs empty
When should I expect batch_size=1
?¶
You may expect batch_size=1
in the following scenarios:
-
CSV Formatter was connected to the output of block that only operates on one image and produces one prediction
-
CSV Formatter was connected to the output of block that aggregates data for whole batch and produces single non-empty output (which is exactly the characteristics of CSV Formatter itself)
When should I expect batch_size>1
?¶
You may expect batch_size=1
in the following scenarios:
- CSV Formatter was connected to the output of block that produces single prediction for single image, but batch of images were fed - then CSV Formatter will aggregate the CSV content and output it in the position of the last batch element:
--- input_batch[0] ----> ┌───────────────────────┐ ----> <Empty>
--- input_batch[1] ----> │ │ ----> <Empty>
... │ CSV Formatter │ ----> <Empty>
... │ │ ----> <Empty>
--- input_batch[n] ----> └───────────────────────┘ ----> {"csv_content": "..."}
Format of CSV document for batch_size>1
If the example presented above is applied for larger input batch sizes - the output document structure would be as follows:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.436322+00:00","['b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.536322+00:00","['a', 'c']","['a', 'b']"
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/csv_formatter@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
columns_data |
Dict[str, Union[bool, float, int, str]] |
References data to be used to construct each and every column. | ✅ |
columns_operations |
Dict[str, List[Union[ClassificationPropertyExtract, ConvertDictionaryToJSON, ConvertImageToBase64, ConvertImageToJPEG, DetectionsFilter, DetectionsOffset, DetectionsPropertyExtract, DetectionsRename, DetectionsSelection, DetectionsShift, DetectionsToDictionary, Divide, ExtractDetectionProperty, ExtractImageProperty, LookupTable, Multiply, NumberRound, NumericSequenceAggregate, PickDetectionsByParentClass, RandomNumber, SequenceAggregate, SequenceApply, SequenceElementsCount, SequenceLength, SequenceMap, SortDetections, StringMatches, StringSubSequence, StringToLowerCase, StringToUpperCase, ToBoolean, ToNumber, ToString]]] |
UQL definitions of operations to be performed on defined data w.r.t. each column. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to CSV Formatter
in version v1
.
- inputs:
Cache Get
,Image Slicer
,Segment Anything 2 Model
,Stability AI Inpainting
,Environment Secrets Store
,Clip Comparison
,Perspective Correction
,Cache Set
,Object Detection Model
,Roboflow Custom Metadata
,Object Detection Model
,SIFT Comparison
,Detection Offset
,CogVLM
,Ellipse Visualization
,Grid Visualization
,SIFT
,VLM as Detector
,Image Contours
,Multi-Label Classification Model
,OpenAI
,Absolute Static Crop
,Camera Focus
,Trace Visualization
,Property Definition
,CLIP Embedding Model
,Multi-Label Classification Model
,VLM as Detector
,Dot Visualization
,Clip Comparison
,Google Vision OCR
,Identify Changes
,Polygon Zone Visualization
,Gaze Detection
,Identify Outliers
,Roboflow Dataset Upload
,First Non Empty Or Default
,Classification Label Visualization
,Corner Visualization
,VLM as Classifier
,Byte Tracker
,Llama 3.2 Vision
,Dynamic Crop
,Line Counter
,Reference Path Visualization
,Label Visualization
,Detections Stabilizer
,Mask Visualization
,Triangle Visualization
,Line Counter Visualization
,Template Matching
,Dynamic Zone
,Detections Transformation
,Dominant Color
,Time in Zone
,Barcode Detection
,Model Monitoring Inference Aggregator
,Blur Visualization
,Line Counter
,Anthropic Claude
,Webhook Sink
,Instance Segmentation Model
,SIFT Comparison
,Time in Zone
,Instance Segmentation Model
,Cosine Similarity
,Slack Notification
,Detections Filter
,Stitch OCR Detections
,Pixelate Visualization
,Path Deviation
,OpenAI
,Relative Static Crop
,Detections Consensus
,Twilio SMS Notification
,Delta Filter
,Dimension Collapse
,VLM as Classifier
,Roboflow Dataset Upload
,Keypoint Detection Model
,Google Gemini
,Rate Limiter
,Model Comparison Visualization
,Halo Visualization
,JSON Parser
,Crop Visualization
,Qwen2.5-VL
,Byte Tracker
,Expression
,Image Blur
,Distance Measurement
,Circle Visualization
,Velocity
,Buffer
,Keypoint Detection Model
,Image Preprocessing
,Background Color Visualization
,Continue If
,QR Code Detection
,Bounding Rectangle
,Pixel Color Count
,Size Measurement
,Florence-2 Model
,Single-Label Classification Model
,Bounding Box Visualization
,Florence-2 Model
,Local File Sink
,Byte Tracker
,Image Slicer
,LMM For Classification
,Stitch Images
,Stability AI Image Generation
,Image Threshold
,Detections Stitch
,OCR Model
,LMM
,Keypoint Visualization
,Email Notification
,Color Visualization
,Path Deviation
,Single-Label Classification Model
,YOLO-World Model
,Data Aggregator
,CSV Formatter
,Image Convert Grayscale
,Detections Classes Replacement
,Polygon Visualization
- outputs:
Segment Anything 2 Model
,Cache Get
,Stability AI Inpainting
,Clip Comparison
,Perspective Correction
,Cache Set
,Roboflow Custom Metadata
,SIFT Comparison
,CogVLM
,Ellipse Visualization
,OpenAI
,Polygon Visualization
,Trace Visualization
,CLIP Embedding Model
,Dot Visualization
,Google Vision OCR
,Polygon Zone Visualization
,Roboflow Dataset Upload
,Llama 3.2 Vision
,Classification Label Visualization
,Corner Visualization
,Line Counter
,Dynamic Crop
,Reference Path Visualization
,Label Visualization
,Mask Visualization
,Triangle Visualization
,Line Counter Visualization
,Model Monitoring Inference Aggregator
,Time in Zone
,Line Counter
,Anthropic Claude
,Instance Segmentation Model
,Webhook Sink
,Time in Zone
,Instance Segmentation Model
,Slack Notification
,Path Deviation
,Twilio SMS Notification
,Roboflow Dataset Upload
,Google Gemini
,Model Comparison Visualization
,Halo Visualization
,Crop Visualization
,Image Blur
,Distance Measurement
,Circle Visualization
,Image Preprocessing
,Background Color Visualization
,Pixel Color Count
,Size Measurement
,Florence-2 Model
,Bounding Box Visualization
,Florence-2 Model
,Local File Sink
,LMM For Classification
,Stability AI Image Generation
,Image Threshold
,Detections Stitch
,LMM
,Keypoint Visualization
,Email Notification
,Color Visualization
,Path Deviation
,YOLO-World Model
,OpenAI
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
CSV Formatter
in version v1
has.
Bindings
Example JSON definition of step CSV Formatter
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/csv_formatter@v1",
"columns_data": {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names"
},
"columns_operations": {
"predictions": [
{
"property_name": "class_name",
"type": "DetectionsPropertyExtract"
}
]
}
}