CSV Formatter¶
Class: CSVFormatterBlockV1
Source: inference.core.workflows.core_steps.formatters.csv.v1.CSVFormatterBlockV1
The CSV Formatter block prepares structured CSV content based on specified data configurations within a workflow. It allows users to:
-
choose which data appears as columns
-
apply operations to transform the data within the block
-
aggregate whole batch of data into single CSV document (see Data Aggregation section)
The generated CSV content can be used as input for other blocks, such as File Sink or Email Notifications.
Defining columns¶
Use columns_data property to specify name of the columns and data sources. Defining UQL operations in
columns_operations you can perform specific operation on each column.
Timestamp column
The block automatically adds timestamp column and this column name is reserved and cannot be used.
The value of timestamp would be in the following format: 2024-10-18T14:09:57.622297+00:00, values
are scaled to UTC time zone.
For example, the following definition
columns_data = {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names",
}
columns_operations = {
"predictions": [
{"type": "DetectionsPropertyExtract", "property_name": "class_name"}
],
}
Will generate CSV content:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
When applied on object detection predictions from a single image, assuming that $inputs.reference_class_names
holds a list of reference classes.
Data Aggregation¶
The block may take input from different blocks, hence its behavior may differ depending on context:
-
data
batch_size=1: whenever single input is provided - block will provide the output as in the example above - CSV header will be placed in the first row, the second row will hold the data -
data
batch_size>1: each datapoint will create one row in CSV document, but only the last batch element will be fed with the aggregated output, leaving other batch elements' outputs empty
When should I expect batch_size=1?¶
You may expect batch_size=1 in the following scenarios:
-
CSV Formatter was connected to the output of block that only operates on one image and produces one prediction
-
CSV Formatter was connected to the output of block that aggregates data for whole batch and produces single non-empty output (which is exactly the characteristics of CSV Formatter itself)
When should I expect batch_size>1?¶
You may expect batch_size=1 in the following scenarios:
- CSV Formatter was connected to the output of block that produces single prediction for single image, but batch of images were fed - then CSV Formatter will aggregate the CSV content and output it in the position of the last batch element:
--- input_batch[0] ----> ┌───────────────────────┐ ----> <Empty>
--- input_batch[1] ----> │ │ ----> <Empty>
... │ CSV Formatter │ ----> <Empty>
... │ │ ----> <Empty>
--- input_batch[n] ----> └───────────────────────┘ ----> {"csv_content": "..."}
Format of CSV document for batch_size>1
If the example presented above is applied for larger input batch sizes - the output document structure would be as follows:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.436322+00:00","['b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.536322+00:00","['a', 'c']","['a', 'b']"
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/csv_formatter@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
columns_data |
Dict[str, Union[bool, float, int, str]] |
References data to be used to construct each and every column. | ✅ |
columns_operations |
Dict[str, List[Union[ClassificationPropertyExtract, ConvertDictionaryToJSON, ConvertImageToBase64, ConvertImageToJPEG, DetectionsFilter, DetectionsOffset, DetectionsPropertyExtract, DetectionsRename, DetectionsSelection, DetectionsShift, DetectionsToDictionary, Divide, ExtractDetectionProperty, ExtractFrameMetadata, ExtractImageProperty, LookupTable, Multiply, NumberRound, NumericSequenceAggregate, PickDetectionsByParentClass, RandomNumber, SequenceAggregate, SequenceApply, SequenceElementsCount, SequenceLength, SequenceMap, SortDetections, StringMatches, StringSubSequence, StringToLowerCase, StringToUpperCase, TimestampToISOFormat, ToBoolean, ToNumber, ToString]]] |
UQL definitions of operations to be performed on defined data w.r.t. each column. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to CSV Formatter in version v1.
- inputs:
VLM as Detector,Byte Tracker,Google Vision OCR,SAM 3,Overlap Filter,Detections Stabilizer,Image Preprocessing,LMM For Classification,Ellipse Visualization,Stitch Images,Triangle Visualization,Detections Combine,QR Code Generator,VLM as Classifier,Image Slicer,Background Color Visualization,Model Monitoring Inference Aggregator,Segment Anything 2 Model,Template Matching,Distance Measurement,Dot Visualization,EasyOCR,Halo Visualization,Data Aggregator,Slack Notification,Byte Tracker,Color Visualization,JSON Parser,Llama 3.2 Vision,QR Code Detection,Expression,Line Counter,Size Measurement,Email Notification,Delta Filter,Corner Visualization,Mask Visualization,Continue If,Time in Zone,Roboflow Custom Metadata,Stability AI Outpainting,Barcode Detection,Dominant Color,Time in Zone,Crop Visualization,VLM as Detector,Grid Visualization,Perspective Correction,Clip Comparison,Single-Label Classification Model,Contrast Equalization,Polygon Zone Visualization,CLIP Embedding Model,Bounding Box Visualization,Camera Focus,Icon Visualization,Image Blur,Time in Zone,Path Deviation,Environment Secrets Store,Anthropic Claude,Cosine Similarity,Multi-Label Classification Model,Dynamic Crop,Bounding Rectangle,Path Deviation,Detections Consensus,Model Comparison Visualization,Rate Limiter,Cache Get,Local File Sink,Identify Changes,Classification Label Visualization,Circle Visualization,SIFT Comparison,Image Contours,Relative Static Crop,Detections Filter,VLM as Classifier,Stability AI Inpainting,Moondream2,Velocity,OCR Model,Florence-2 Model,SIFT,Morphological Transformation,Detections Transformation,Reference Path Visualization,Gaze Detection,SIFT Comparison,Buffer,Polygon Visualization,Florence-2 Model,Image Slicer,Detection Offset,Clip Comparison,Perception Encoder Embedding Model,Image Convert Grayscale,OpenAI,Instance Segmentation Model,Line Counter,PTZ Tracking (ONVIF).md),Keypoint Detection Model,Object Detection Model,Google Gemini,Label Visualization,Email Notification,Byte Tracker,Trace Visualization,Dynamic Zone,YOLO-World Model,OpenAI,CogVLM,Detections Stitch,Stitch OCR Detections,Cache Set,Blur Visualization,CSV Formatter,Single-Label Classification Model,OpenAI,Detections Classes Replacement,Twilio SMS Notification,Absolute Static Crop,Seg Preview,Roboflow Dataset Upload,Roboflow Dataset Upload,Property Definition,Stability AI Image Generation,Webhook Sink,Depth Estimation,Dimension Collapse,Line Counter Visualization,Instance Segmentation Model,Multi-Label Classification Model,Pixelate Visualization,Image Threshold,Detections Merge,Keypoint Detection Model,LMM,Google Gemini,Identify Outliers,Pixel Color Count,SmolVLM2,Qwen2.5-VL,First Non Empty Or Default,Camera Calibration,Keypoint Visualization,Object Detection Model - outputs:
Google Vision OCR,SAM 3,Classification Label Visualization,Circle Visualization,Image Preprocessing,LMM For Classification,Ellipse Visualization,Triangle Visualization,Stability AI Inpainting,QR Code Generator,Background Color Visualization,Model Monitoring Inference Aggregator,Segment Anything 2 Model,Moondream2,Distance Measurement,Dot Visualization,Florence-2 Model,Morphological Transformation,Reference Path Visualization,Halo Visualization,SIFT Comparison,Polygon Visualization,Florence-2 Model,Slack Notification,Clip Comparison,Perception Encoder Embedding Model,Instance Segmentation Model,OpenAI,Color Visualization,Line Counter,PTZ Tracking (ONVIF).md),Google Gemini,Label Visualization,Email Notification,Llama 3.2 Vision,Trace Visualization,Line Counter,YOLO-World Model,Size Measurement,Email Notification,Corner Visualization,Mask Visualization,Time in Zone,OpenAI,Roboflow Custom Metadata,Stability AI Outpainting,CogVLM,Stitch OCR Detections,Detections Stitch,Cache Set,Time in Zone,Crop Visualization,OpenAI,Detections Classes Replacement,Perspective Correction,Twilio SMS Notification,Seg Preview,Contrast Equalization,Roboflow Dataset Upload,Roboflow Dataset Upload,Polygon Zone Visualization,CLIP Embedding Model,Stability AI Image Generation,Webhook Sink,Bounding Box Visualization,Line Counter Visualization,Instance Segmentation Model,Icon Visualization,Image Blur,Time in Zone,Image Threshold,Path Deviation,Anthropic Claude,LMM,Google Gemini,Pixel Color Count,Dynamic Crop,Path Deviation,Model Comparison Visualization,Cache Get,Local File Sink,Keypoint Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
CSV Formatter in version v1 has.
Bindings
Example JSON definition of step CSV Formatter in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/csv_formatter@v1",
"columns_data": {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names"
},
"columns_operations": {
"predictions": [
{
"property_name": "class_name",
"type": "DetectionsPropertyExtract"
}
]
}
}