Depth Estimation¶
Class: DepthEstimationBlockV1
Source: inference.core.workflows.core_steps.models.foundation.depth_estimation.v1.DepthEstimationBlockV1
π― This workflow block performs depth estimation on images using Apple's DepthPro model. It analyzes the spatial relationships
and depth information in images to create a depth map where:
π Each pixel's value represents its relative distance from the camera
π Lower values (darker colors) indicate closer objects
π Higher values (lighter colors) indicate further objects
The model outputs:
1. πΊοΈ A depth map showing the relative distances of objects in the scene
2. π The camera's field of view (in degrees)
3. π¬ The camera's focal length
This is particularly useful for:
- ποΈ Understanding 3D structure from 2D images
- π¨ Creating depth-aware visualizations
- π Analyzing spatial relationships in scenes
- πΆοΈ Applications in augmented reality and 3D reconstruction
β‘ The model runs efficiently on Apple Silicon (M1-M4) using Metal Performance Shaders (MPS) for accelerated inference.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/depth_estimation@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | β |
model_version |
str |
The Depth Estimation model to be used for inference.. | β |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Depth Estimation
in version v1
.
- inputs:
Grid Visualization
,Ellipse Visualization
,Image Blur
,Image Preprocessing
,Image Slicer
,Dynamic Crop
,Absolute Static Crop
,Color Visualization
,Line Counter Visualization
,Corner Visualization
,Depth Estimation
,SIFT Comparison
,Stability AI Outpainting
,Keypoint Visualization
,Image Convert Grayscale
,Trace Visualization
,Background Color Visualization
,QR Code Generator
,Model Comparison Visualization
,Mask Visualization
,Image Slicer
,Polygon Zone Visualization
,Image Threshold
,Camera Focus
,Contrast Equalization
,Polygon Visualization
,Stability AI Inpainting
,Dot Visualization
,Morphological Transformation
,Classification Label Visualization
,Relative Static Crop
,Circle Visualization
,Bounding Box Visualization
,Camera Calibration
,Blur Visualization
,Image Contours
,Stitch Images
,Halo Visualization
,Reference Path Visualization
,Triangle Visualization
,Pixelate Visualization
,Perspective Correction
,SIFT
,Icon Visualization
,Label Visualization
,Stability AI Image Generation
,Crop Visualization
- outputs:
Image Blur
,Image Preprocessing
,Image Slicer
,OpenAI
,Instance Segmentation Model
,Dynamic Crop
,Multi-Label Classification Model
,Roboflow Dataset Upload
,LMM
,Moondream2
,Absolute Static Crop
,Corner Visualization
,Color Visualization
,Google Gemini
,Depth Estimation
,Keypoint Detection Model
,Stability AI Outpainting
,Keypoint Visualization
,Trace Visualization
,Clip Comparison
,Google Vision OCR
,Keypoint Detection Model
,Single-Label Classification Model
,Time in Zone
,Model Comparison Visualization
,YOLO-World Model
,Mask Visualization
,Image Slicer
,Clip Comparison
,Multi-Label Classification Model
,Buffer
,Image Threshold
,Contrast Equalization
,OpenAI
,Barcode Detection
,Morphological Transformation
,Classification Label Visualization
,Relative Static Crop
,Camera Calibration
,Florence-2 Model
,Stitch Images
,Blur Visualization
,Roboflow Dataset Upload
,Qwen2.5-VL
,Triangle Visualization
,Perspective Correction
,SIFT
,Icon Visualization
,QR Code Detection
,Pixel Color Count
,Stability AI Image Generation
,Label Visualization
,Object Detection Model
,Llama 3.2 Vision
,Ellipse Visualization
,CogVLM
,Detections Stabilizer
,SIFT Comparison
,VLM as Detector
,SmolVLM2
,Single-Label Classification Model
,Line Counter Visualization
,Florence-2 Model
,SIFT Comparison
,Image Convert Grayscale
,Gaze Detection
,Perception Encoder Embedding Model
,Background Color Visualization
,VLM as Classifier
,Segment Anything 2 Model
,Polygon Zone Visualization
,Anthropic Claude
,VLM as Detector
,Detections Stitch
,Byte Tracker
,Polygon Visualization
,Camera Focus
,Dot Visualization
,LMM For Classification
,Template Matching
,CLIP Embedding Model
,Instance Segmentation Model
,Circle Visualization
,Bounding Box Visualization
,Image Contours
,OpenAI
,Object Detection Model
,OCR Model
,Dominant Color
,Halo Visualization
,Reference Path Visualization
,VLM as Classifier
,Pixelate Visualization
,EasyOCR
,Stability AI Inpainting
,Crop Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Depth Estimation
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..
-
output
image
(image
): Image in workflows.normalized_depth
(numpy_array
): Numpy array.
Example JSON definition of step Depth Estimation
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/depth_estimation@v1",
"images": "$inputs.image",
"model_version": "depth-anything-v2/small"
}