Detection Offset¶
Class: DetectionOffsetBlockV1
Source: inference.core.workflows.core_steps.transformations.detection_offset.v1.DetectionOffsetBlockV1
Apply a fixed offset to the width and height of a detection.
You can use this block to add padding around the result of a detection. This is useful to ensure that you can analyze bounding boxes that may be within the region of an object instead of being around an object.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/detection_offset@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
offset_width |
int |
Offset for box width.. | ✅ |
offset_height |
int |
Offset for box height.. | ✅ |
units |
str |
Units for offset dimensions.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Detection Offset
in version v1
.
- inputs:
Keypoint Detection Model
,Detections Stabilizer
,Image Contours
,Path Deviation
,Time in Zone
,Path Deviation
,Perspective Correction
,Gaze Detection
,Detections Transformation
,Instance Segmentation Model
,Byte Tracker
,Byte Tracker
,PTZ Tracking (ONVIF)
.md),Keypoint Detection Model
,Byte Tracker
,Object Detection Model
,Velocity
,Detections Classes Replacement
,SIFT Comparison
,YOLO-World Model
,Detections Merge
,Time in Zone
,VLM as Detector
,Template Matching
,Instance Segmentation Model
,Dynamic Zone
,Dynamic Crop
,Time in Zone
,Line Counter
,Detections Consensus
,Moondream2
,Distance Measurement
,Overlap Filter
,Google Vision OCR
,Segment Anything 2 Model
,Line Counter
,Pixel Color Count
,Detections Stitch
,SIFT Comparison
,Bounding Rectangle
,Detection Offset
,Object Detection Model
,Detections Filter
,VLM as Detector
- outputs:
Keypoint Visualization
,Detections Stabilizer
,Roboflow Dataset Upload
,Circle Visualization
,Path Deviation
,Time in Zone
,Path Deviation
,Perspective Correction
,Color Visualization
,Detections Transformation
,Mask Visualization
,Byte Tracker
,Byte Tracker
,Florence-2 Model
,Blur Visualization
,PTZ Tracking (ONVIF)
.md),Pixelate Visualization
,Byte Tracker
,Velocity
,Dot Visualization
,Stability AI Inpainting
,Roboflow Dataset Upload
,Detections Classes Replacement
,Detections Merge
,Icon Visualization
,Time in Zone
,Roboflow Custom Metadata
,Model Monitoring Inference Aggregator
,Polygon Visualization
,Dynamic Zone
,Dynamic Crop
,Crop Visualization
,Stitch OCR Detections
,Time in Zone
,Ellipse Visualization
,Detections Consensus
,Line Counter
,Trace Visualization
,Bounding Box Visualization
,Distance Measurement
,Segment Anything 2 Model
,Overlap Filter
,Label Visualization
,Line Counter
,Corner Visualization
,Detections Stitch
,Bounding Rectangle
,Size Measurement
,Detection Offset
,Model Comparison Visualization
,Background Color Visualization
,Detections Filter
,Florence-2 Model
,Halo Visualization
,Triangle Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Detection Offset
in version v1
has.
Bindings
-
input
predictions
(Union[instance_segmentation_prediction
,object_detection_prediction
,keypoint_detection_prediction
]): Model predictions to offset dimensions for..offset_width
(integer
): Offset for box width..offset_height
(integer
): Offset for box height..
-
output
predictions
(Union[object_detection_prediction
,instance_segmentation_prediction
,keypoint_detection_prediction
]): Prediction with detected bounding boxes in form of sv.Detections(...) object ifobject_detection_prediction
or Prediction with detected bounding boxes and segmentation masks in form of sv.Detections(...) object ifinstance_segmentation_prediction
or Prediction with detected bounding boxes and detected keypoints in form of sv.Detections(...) object ifkeypoint_detection_prediction
.
Example JSON definition of step Detection Offset
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/detection_offset@v1",
"predictions": "$steps.object_detection_model.predictions",
"offset_width": 10,
"offset_height": 10,
"units": "Pixels"
}