Detection Offset¶
Class: DetectionOffsetBlockV1
Source: inference.core.workflows.core_steps.transformations.detection_offset.v1.DetectionOffsetBlockV1
Apply a fixed offset to the width and height of a detection.
You can use this block to add padding around the result of a detection. This is useful to ensure that you can analyze bounding boxes that may be within the region of an object instead of being around an object.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/detection_offset@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
offset_width |
int |
Offset for box width.. | ✅ |
offset_height |
int |
Offset for box height.. | ✅ |
units |
str |
Units for offset dimensions.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Detection Offset
in version v1
.
- inputs:
SIFT Comparison
,Detections Stabilizer
,VLM as Detector
,Byte Tracker
,Dynamic Crop
,Instance Segmentation Model
,Time in Zone
,Moondream2
,Line Counter
,Overlap Filter
,Keypoint Detection Model
,Byte Tracker
,SIFT Comparison
,Distance Measurement
,PTZ Tracking (ONVIF)
.md),Detection Offset
,Detections Combine
,Gaze Detection
,Google Vision OCR
,YOLO-World Model
,Keypoint Detection Model
,Time in Zone
,Segment Anything 2 Model
,VLM as Detector
,Detections Stitch
,Byte Tracker
,Detections Consensus
,Line Counter
,Bounding Rectangle
,Detections Filter
,Path Deviation
,Template Matching
,Velocity
,Time in Zone
,Detections Classes Replacement
,Path Deviation
,Instance Segmentation Model
,Dynamic Zone
,Image Contours
,Object Detection Model
,OCR Model
,Detections Merge
,Perspective Correction
,EasyOCR
,Detections Transformation
,Object Detection Model
,Pixel Color Count
- outputs:
Ellipse Visualization
,Detections Stabilizer
,Byte Tracker
,Dynamic Crop
,Time in Zone
,Roboflow Dataset Upload
,Color Visualization
,Corner Visualization
,Florence-2 Model
,Line Counter
,Overlap Filter
,Keypoint Visualization
,Distance Measurement
,Byte Tracker
,PTZ Tracking (ONVIF)
.md),Detection Offset
,Detections Combine
,Trace Visualization
,Roboflow Custom Metadata
,Background Color Visualization
,Time in Zone
,Model Comparison Visualization
,Segment Anything 2 Model
,Mask Visualization
,Model Monitoring Inference Aggregator
,Size Measurement
,Detections Stitch
,Byte Tracker
,Detections Consensus
,Polygon Visualization
,Stability AI Inpainting
,Line Counter
,Bounding Rectangle
,Dot Visualization
,Detections Filter
,Path Deviation
,Velocity
,Time in Zone
,Path Deviation
,Detections Classes Replacement
,Detections Transformation
,Circle Visualization
,Bounding Box Visualization
,Dynamic Zone
,Florence-2 Model
,Blur Visualization
,Halo Visualization
,Roboflow Dataset Upload
,Detections Merge
,Triangle Visualization
,Pixelate Visualization
,Perspective Correction
,Icon Visualization
,Label Visualization
,Stitch OCR Detections
,Crop Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Detection Offset
in version v1
has.
Bindings
-
input
predictions
(Union[instance_segmentation_prediction
,keypoint_detection_prediction
,object_detection_prediction
]): Model predictions to offset dimensions for..offset_width
(integer
): Offset for box width..offset_height
(integer
): Offset for box height..
-
output
predictions
(Union[object_detection_prediction
,instance_segmentation_prediction
,keypoint_detection_prediction
]): Prediction with detected bounding boxes in form of sv.Detections(...) object ifobject_detection_prediction
or Prediction with detected bounding boxes and segmentation masks in form of sv.Detections(...) object ifinstance_segmentation_prediction
or Prediction with detected bounding boxes and detected keypoints in form of sv.Detections(...) object ifkeypoint_detection_prediction
.
Example JSON definition of step Detection Offset
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/detection_offset@v1",
"predictions": "$steps.object_detection_model.predictions",
"offset_width": 10,
"offset_height": 10,
"units": "Pixels"
}