Detection Offset¶
Class: DetectionOffsetBlockV1
Source: inference.core.workflows.core_steps.transformations.detection_offset.v1.DetectionOffsetBlockV1
Apply a fixed offset to the width and height of a detection.
You can use this block to add padding around the result of a detection. This is useful to ensure that you can analyze bounding boxes that may be within the region of an object instead of being around an object.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/detection_offset@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
offset_width |
int |
Offset for box width.. | ✅ |
offset_height |
int |
Offset for box height.. | ✅ |
units |
str |
Units for offset dimensions.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Detection Offset
in version v1
.
- inputs:
Bounding Rectangle
,Instance Segmentation Model
,VLM as Detector
,Dynamic Crop
,Time in Zone
,Google Vision OCR
,Byte Tracker
,Segment Anything 2 Model
,Detection Offset
,Detections Filter
,Detections Transformation
,YOLO-World Model
,Template Matching
,VLM as Detector
,SIFT Comparison
,Path Deviation
,Detections Consensus
,Keypoint Detection Model
,Detections Merge
,Velocity
,Detections Stitch
,Dynamic Zone
,Instance Segmentation Model
,Pixel Color Count
,Detections Classes Replacement
,Detections Stabilizer
,Path Deviation
,Gaze Detection
,Object Detection Model
,Line Counter
,Image Contours
,Time in Zone
,Keypoint Detection Model
,Perspective Correction
,Moondream2
,Byte Tracker
,SIFT Comparison
,Byte Tracker
,Line Counter
,Distance Measurement
,Object Detection Model
- outputs:
Bounding Rectangle
,Blur Visualization
,Pixelate Visualization
,Background Color Visualization
,Dynamic Crop
,Keypoint Visualization
,Mask Visualization
,Time in Zone
,Byte Tracker
,Segment Anything 2 Model
,Detection Offset
,Model Monitoring Inference Aggregator
,Florence-2 Model
,Florence-2 Model
,Detections Filter
,Detections Transformation
,Roboflow Dataset Upload
,Circle Visualization
,Crop Visualization
,Trace Visualization
,Path Deviation
,Triangle Visualization
,Detections Consensus
,Stitch OCR Detections
,Polygon Visualization
,Stability AI Inpainting
,Halo Visualization
,Dot Visualization
,Velocity
,Detections Merge
,Detections Stitch
,Dynamic Zone
,Size Measurement
,Roboflow Custom Metadata
,Detections Classes Replacement
,Detections Stabilizer
,Label Visualization
,Path Deviation
,Line Counter
,Corner Visualization
,Time in Zone
,Model Comparison Visualization
,Bounding Box Visualization
,Roboflow Dataset Upload
,Perspective Correction
,Byte Tracker
,Byte Tracker
,Line Counter
,Distance Measurement
,Color Visualization
,Ellipse Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Detection Offset
in version v1
has.
Bindings
-
input
predictions
(Union[keypoint_detection_prediction
,object_detection_prediction
,instance_segmentation_prediction
]): Model predictions to offset dimensions for..offset_width
(integer
): Offset for box width..offset_height
(integer
): Offset for box height..
-
output
predictions
(Union[object_detection_prediction
,instance_segmentation_prediction
,keypoint_detection_prediction
]): Prediction with detected bounding boxes in form of sv.Detections(...) object ifobject_detection_prediction
or Prediction with detected bounding boxes and segmentation masks in form of sv.Detections(...) object ifinstance_segmentation_prediction
or Prediction with detected bounding boxes and detected keypoints in form of sv.Detections(...) object ifkeypoint_detection_prediction
.
Example JSON definition of step Detection Offset
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/detection_offset@v1",
"predictions": "$steps.object_detection_model.predictions",
"offset_width": 10,
"offset_height": 10,
"units": "Pixels"
}