Detection Offset¶
Class: DetectionOffsetBlockV1
Source: inference.core.workflows.core_steps.transformations.detection_offset.v1.DetectionOffsetBlockV1
Apply a fixed offset to the width and height of a detection.
You can use this block to add padding around the result of a detection. This is useful to ensure that you can analyze bounding boxes that may be within the region of an object instead of being around an object.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/detection_offset@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
offset_width |
int |
Offset for box width.. | ✅ |
offset_height |
int |
Offset for box height.. | ✅ |
units |
str |
Units for offset dimensions.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Detection Offset
in version v1
.
- inputs:
Detections Transformation
,Moondream2
,Detection Offset
,Perspective Correction
,Byte Tracker
,YOLO-World Model
,Detections Stabilizer
,Velocity
,SIFT Comparison
,Byte Tracker
,Time in Zone
,Detections Merge
,Detections Stitch
,Detections Filter
,Keypoint Detection Model
,Object Detection Model
,Dynamic Zone
,Segment Anything 2 Model
,Line Counter
,Detections Consensus
,Dynamic Crop
,SIFT Comparison
,Byte Tracker
,Image Contours
,Keypoint Detection Model
,VLM as Detector
,Pixel Color Count
,Bounding Rectangle
,Path Deviation
,Object Detection Model
,Time in Zone
,Line Counter
,VLM as Detector
,Detections Classes Replacement
,Template Matching
,Path Deviation
,Overlap Filter
,Instance Segmentation Model
,PTZ Tracking (ONVIF)
.md),Gaze Detection
,Instance Segmentation Model
,Distance Measurement
,Google Vision OCR
- outputs:
Detections Transformation
,Trace Visualization
,Size Measurement
,Detection Offset
,Florence-2 Model
,Background Color Visualization
,Byte Tracker
,Perspective Correction
,Detections Stabilizer
,Polygon Visualization
,Velocity
,Byte Tracker
,Halo Visualization
,Stitch OCR Detections
,Stability AI Inpainting
,Label Visualization
,Model Comparison Visualization
,Detections Merge
,Time in Zone
,Detections Stitch
,Detections Filter
,Model Monitoring Inference Aggregator
,Pixelate Visualization
,Dynamic Zone
,Segment Anything 2 Model
,Triangle Visualization
,Line Counter
,Mask Visualization
,Detections Consensus
,Dynamic Crop
,Byte Tracker
,Ellipse Visualization
,Keypoint Visualization
,Blur Visualization
,Corner Visualization
,Bounding Rectangle
,Path Deviation
,Crop Visualization
,Dot Visualization
,Time in Zone
,Circle Visualization
,Line Counter
,Florence-2 Model
,Roboflow Dataset Upload
,Bounding Box Visualization
,Detections Classes Replacement
,Roboflow Custom Metadata
,Path Deviation
,Color Visualization
,Overlap Filter
,PTZ Tracking (ONVIF)
.md),Roboflow Dataset Upload
,Distance Measurement
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Detection Offset
in version v1
has.
Bindings
-
input
predictions
(Union[keypoint_detection_prediction
,instance_segmentation_prediction
,object_detection_prediction
]): Model predictions to offset dimensions for..offset_width
(integer
): Offset for box width..offset_height
(integer
): Offset for box height..
-
output
predictions
(Union[object_detection_prediction
,instance_segmentation_prediction
,keypoint_detection_prediction
]): Prediction with detected bounding boxes in form of sv.Detections(...) object ifobject_detection_prediction
or Prediction with detected bounding boxes and segmentation masks in form of sv.Detections(...) object ifinstance_segmentation_prediction
or Prediction with detected bounding boxes and detected keypoints in form of sv.Detections(...) object ifkeypoint_detection_prediction
.
Example JSON definition of step Detection Offset
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/detection_offset@v1",
"predictions": "$steps.object_detection_model.predictions",
"offset_width": 10,
"offset_height": 10,
"units": "Pixels"
}