Detections Filter¶
Class: DetectionsFilterBlockV1
Source: inference.core.workflows.core_steps.transformations.detections_filter.v1.DetectionsFilterBlockV1
Conditionally filter out model predictions.
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/detections_filter@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
operations |
List[Union[ClassificationPropertyExtract, ConvertDictionaryToJSON, ConvertImageToBase64, ConvertImageToJPEG, DetectionsFilter, DetectionsOffset, DetectionsPropertyExtract, DetectionsRename, DetectionsSelection, DetectionsShift, DetectionsToDictionary, Divide, ExtractDetectionProperty, ExtractFrameMetadata, ExtractImageProperty, LookupTable, Multiply, NumberRound, NumericSequenceAggregate, PickDetectionsByParentClass, RandomNumber, SequenceAggregate, SequenceApply, SequenceElementsCount, SequenceLength, SequenceMap, SortDetections, StringMatches, StringSubSequence, StringToLowerCase, StringToUpperCase, TimestampToISOFormat, ToBoolean, ToNumber, ToString]] |
Definition of filtering logic.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Detections Filter in version v1.
- inputs:
Absolute Static Crop,Relative Static Crop,Expression,LMM For Classification,VLM as Classifier,Seg Preview,Instance Segmentation Model,Color Visualization,Trace Visualization,Polygon Zone Visualization,Camera Focus,Halo Visualization,Identify Changes,Camera Calibration,VLM as Classifier,Triangle Visualization,Single-Label Classification Model,Image Threshold,Detections Classes Replacement,Gaze Detection,Single-Label Classification Model,Detection Offset,Morphological Transformation,Roboflow Custom Metadata,Grid Visualization,Image Preprocessing,Cache Set,Line Counter Visualization,SIFT Comparison,Stitch OCR Detections,Path Deviation,PTZ Tracking (ONVIF).md),Model Comparison Visualization,Multi-Label Classification Model,Multi-Label Classification Model,Roboflow Dataset Upload,Template Matching,Line Counter,Path Deviation,Polygon Visualization,Detections Stabilizer,Llama 3.2 Vision,Icon Visualization,Bounding Rectangle,Local File Sink,VLM as Detector,Twilio SMS Notification,SIFT,Cosine Similarity,Classification Label Visualization,Background Color Visualization,Webhook Sink,Dynamic Crop,Dominant Color,Pixelate Visualization,Detections Consensus,QR Code Detection,Email Notification,Buffer,Image Slicer,Crop Visualization,Keypoint Detection Model,Mask Visualization,Detections Merge,Barcode Detection,Environment Secrets Store,Detections Transformation,Depth Estimation,Rate Limiter,Perspective Correction,Keypoint Detection Model,EasyOCR,Distance Measurement,Circle Visualization,Stability AI Outpainting,Byte Tracker,Size Measurement,VLM as Detector,JSON Parser,Byte Tracker,Keypoint Visualization,Object Detection Model,Clip Comparison,SmolVLM2,Google Vision OCR,Slack Notification,Dimension Collapse,CSV Formatter,OCR Model,Dynamic Zone,Segment Anything 2 Model,Stability AI Inpainting,Reference Path Visualization,Corner Visualization,Ellipse Visualization,OpenAI,Time in Zone,CogVLM,YOLO-World Model,OpenAI,Continue If,Florence-2 Model,Roboflow Dataset Upload,Data Aggregator,Label Visualization,OpenAI,Line Counter,First Non Empty Or Default,Model Monitoring Inference Aggregator,Time in Zone,Velocity,Instance Segmentation Model,Time in Zone,Blur Visualization,Delta Filter,Image Contours,Clip Comparison,Identify Outliers,Object Detection Model,Overlap Filter,Moondream2,Property Definition,Bounding Box Visualization,Dot Visualization,Byte Tracker,CLIP Embedding Model,Detections Combine,Stitch Images,Detections Filter,Qwen2.5-VL,Perception Encoder Embedding Model,SIFT Comparison,Pixel Color Count,QR Code Generator,Google Gemini,Image Slicer,Image Convert Grayscale,Stability AI Image Generation,Contrast Equalization,Anthropic Claude,Cache Get,Image Blur,LMM,Detections Stitch,Florence-2 Model - outputs:
Size Measurement,Line Counter,Line Counter,Path Deviation,Velocity,Byte Tracker,Keypoint Visualization,Model Monitoring Inference Aggregator,Time in Zone,Polygon Visualization,Detections Stabilizer,Icon Visualization,Bounding Rectangle,Time in Zone,Blur Visualization,Trace Visualization,Color Visualization,Halo Visualization,Overlap Filter,Bounding Box Visualization,Dynamic Zone,Triangle Visualization,Background Color Visualization,Segment Anything 2 Model,Dynamic Crop,Dot Visualization,Pixelate Visualization,Stability AI Inpainting,Byte Tracker,Detections Consensus,Corner Visualization,Detections Classes Replacement,Ellipse Visualization,Detections Combine,Time in Zone,Detection Offset,Crop Visualization,Roboflow Custom Metadata,Detections Filter,Mask Visualization,Detections Merge,Florence-2 Model,Detections Transformation,Roboflow Dataset Upload,Stitch OCR Detections,Perspective Correction,Path Deviation,Distance Measurement,Label Visualization,PTZ Tracking (ONVIF).md),Model Comparison Visualization,Circle Visualization,Roboflow Dataset Upload,Detections Stitch,Florence-2 Model,Byte Tracker
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Detections Filter in version v1 has.
Bindings
-
input
predictions(Union[object_detection_prediction,instance_segmentation_prediction,keypoint_detection_prediction]): Model predictions to filter..operations_parameters(*): References to additional parameters that may be provided in runtime to parametrise operations.
-
output
predictions(Union[object_detection_prediction,instance_segmentation_prediction,keypoint_detection_prediction]): Prediction with detected bounding boxes in form of sv.Detections(...) object ifobject_detection_predictionor Prediction with detected bounding boxes and segmentation masks in form of sv.Detections(...) object ifinstance_segmentation_predictionor Prediction with detected bounding boxes and detected keypoints in form of sv.Detections(...) object ifkeypoint_detection_prediction.
Example JSON definition of step Detections Filter in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/detections_filter@v1",
"predictions": "$steps.object_detection_model.predictions",
"operations": [
{
"filter_operation": {
"statements": [
{
"comparator": {
"type": "in (Sequence)"
},
"left_operand": {
"operations": [
{
"property_name": "class_name",
"type": "ExtractDetectionProperty"
}
],
"type": "DynamicOperand"
},
"right_operand": {
"operand_name": "classes",
"type": "DynamicOperand"
},
"type": "BinaryStatement"
}
],
"type": "StatementGroup"
},
"type": "DetectionsFilter"
}
],
"operations_parameters": {
"classes": "$inputs.classes"
}
}