Distance Measurement¶
Class: DistanceMeasurementBlockV1
Source: inference.core.workflows.core_steps.classical_cv.distance_measurement.v1.DistanceMeasurementBlockV1
Calculate the distance between two bounding boxes on a 2D plane, leveraging a perpendicular camera view and either a reference object or a pixel-to-unit scaling ratio for precise measurements.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/distance_measurement@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
object_1_class_name |
str |
The class name of the first object.. | ❌ |
object_2_class_name |
str |
The class name of the second object.. | ❌ |
reference_axis |
str |
The axis along which the distance will be measured.. | ❌ |
calibration_method |
str |
Select how to calibrate the measurement of distance between objects.. | ❌ |
reference_object_class_name |
str |
The class name of the reference object.. | ✅ |
reference_width |
float |
Width of the reference object in centimeters. | ✅ |
reference_height |
float |
Height of the reference object in centimeters. | ✅ |
pixel_ratio |
float |
The pixel-to-centimeter ratio of the input image, i.e. 1 centimeter = 100 pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Distance Measurement
in version v1
.
- inputs:
Bounding Rectangle
,Anthropic Claude
,Multi-Label Classification Model
,Single-Label Classification Model
,LMM
,Email Notification
,Llama 3.2 Vision
,Instance Segmentation Model
,CSV Formatter
,VLM as Detector
,Webhook Sink
,Dynamic Crop
,Camera Focus
,Time in Zone
,Clip Comparison
,Google Vision OCR
,Byte Tracker
,Twilio SMS Notification
,Segment Anything 2 Model
,Detection Offset
,Model Monitoring Inference Aggregator
,Florence-2 Model
,LMM For Classification
,Florence-2 Model
,Detections Filter
,Detections Transformation
,YOLO-World Model
,Roboflow Dataset Upload
,Identify Changes
,CogVLM
,OCR Model
,Template Matching
,VLM as Detector
,Path Deviation
,Detections Consensus
,OpenAI
,Stitch OCR Detections
,Cosine Similarity
,Google Gemini
,Detections Merge
,Velocity
,Local File Sink
,Detections Stitch
,Dynamic Zone
,Instance Segmentation Model
,Roboflow Custom Metadata
,OpenAI
,VLM as Classifier
,Detections Classes Replacement
,Detections Stabilizer
,Path Deviation
,Slack Notification
,Object Detection Model
,Gaze Detection
,Time in Zone
,Roboflow Dataset Upload
,Keypoint Detection Model
,Perspective Correction
,Moondream2
,Byte Tracker
,Byte Tracker
,Line Counter
,Object Detection Model
- outputs:
Identify Outliers
,Classification Label Visualization
,Webhook Sink
,Mask Visualization
,Twilio SMS Notification
,Absolute Static Crop
,Detection Offset
,Image Blur
,Identify Changes
,Circle Visualization
,Crop Visualization
,SIFT Comparison
,Stitch OCR Detections
,Image Preprocessing
,Pixel Color Count
,Detections Stabilizer
,Stitch Images
,Bounding Box Visualization
,Keypoint Detection Model
,Dominant Color
,Perspective Correction
,SIFT Comparison
,Color Visualization
,Slack Notification
,Ellipse Visualization
,Reference Path Visualization
,Blur Visualization
,Anthropic Claude
,Pixelate Visualization
,Email Notification
,Instance Segmentation Model
,Keypoint Visualization
,Byte Tracker
,Grid Visualization
,Trace Visualization
,Image Threshold
,Polygon Visualization
,Detections Consensus
,Triangle Visualization
,Keypoint Detection Model
,Halo Visualization
,Dot Visualization
,Dynamic Zone
,Instance Segmentation Model
,Object Detection Model
,Image Contours
,Corner Visualization
,Line Counter Visualization
,Image Slicer
,Byte Tracker
,Image Slicer
,Byte Tracker
,Label Visualization
,Object Detection Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Distance Measurement
in version v1
has.
Bindings
-
input
predictions
(Union[object_detection_prediction
,instance_segmentation_prediction
]): The output of a detection model describing the bounding boxes that will be used to measure the objects..reference_object_class_name
(string
): The class name of the reference object..reference_width
(float
): Width of the reference object in centimeters.reference_height
(float
): Height of the reference object in centimeters.pixel_ratio
(float
): The pixel-to-centimeter ratio of the input image, i.e. 1 centimeter = 100 pixels..
-
output
Example JSON definition of step Distance Measurement
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/distance_measurement@v1",
"predictions": "$steps.model.predictions",
"object_1_class_name": "car",
"object_2_class_name": "person",
"reference_axis": "vertical",
"calibration_method": "<block_does_not_provide_example>",
"reference_object_class_name": "reference-object",
"reference_width": 2.5,
"reference_height": 2.5,
"pixel_ratio": 100
}