Distance Measurement¶
Class: DistanceMeasurementBlockV1
Source: inference.core.workflows.core_steps.classical_cv.distance_measurement.v1.DistanceMeasurementBlockV1
Calculate the distance between two bounding boxes on a 2D plane, leveraging a perpendicular camera view and either a reference object or a pixel-to-unit scaling ratio for precise measurements.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/distance_measurement@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
object_1_class_name |
str |
The class name of the first object.. | ❌ |
object_2_class_name |
str |
The class name of the second object.. | ❌ |
reference_axis |
str |
The axis along which the distance will be measured.. | ❌ |
calibration_method |
str |
Select how to calibrate the measurement of distance between objects.. | ❌ |
reference_object_class_name |
str |
The class name of the reference object.. | ✅ |
reference_width |
float |
Width of the reference object in centimeters. | ✅ |
reference_height |
float |
Height of the reference object in centimeters. | ✅ |
pixel_ratio |
float |
The pixel-to-centimeter ratio of the input image, i.e. 1 centimeter = 100 pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Distance Measurement
in version v1
.
- inputs:
Anthropic Claude
,Segment Anything 2 Model
,Stitch OCR Detections
,Line Counter
,Keypoint Detection Model
,LMM For Classification
,PTZ Tracking (ONVIF)
.md),Slack Notification
,Detections Stabilizer
,Byte Tracker
,Path Deviation
,Multi-Label Classification Model
,Camera Focus
,Overlap Filter
,Google Gemini
,Gaze Detection
,Cosine Similarity
,VLM as Detector
,VLM as Classifier
,Object Detection Model
,Time in Zone
,Instance Segmentation Model
,Dynamic Zone
,CSV Formatter
,Llama 3.2 Vision
,Google Vision OCR
,Byte Tracker
,Detections Consensus
,Roboflow Dataset Upload
,CogVLM
,Byte Tracker
,Roboflow Dataset Upload
,Detection Offset
,Single-Label Classification Model
,Detections Filter
,OpenAI
,Roboflow Custom Metadata
,Time in Zone
,Email Notification
,OCR Model
,Object Detection Model
,Bounding Rectangle
,Local File Sink
,OpenAI
,Detections Transformation
,LMM
,Detections Classes Replacement
,YOLO-World Model
,Detections Merge
,OpenAI
,Perspective Correction
,Moondream2
,Florence-2 Model
,Florence-2 Model
,Path Deviation
,Model Monitoring Inference Aggregator
,Template Matching
,Instance Segmentation Model
,Twilio SMS Notification
,Velocity
,Detections Stitch
,Webhook Sink
,Identify Changes
,Clip Comparison
,VLM as Detector
,Dynamic Crop
- outputs:
Anthropic Claude
,Crop Visualization
,Stitch OCR Detections
,Blur Visualization
,PTZ Tracking (ONVIF)
.md),Line Counter Visualization
,Color Visualization
,Image Contours
,Mask Visualization
,Circle Visualization
,Absolute Static Crop
,Object Detection Model
,Dynamic Zone
,Keypoint Detection Model
,Byte Tracker
,Detections Consensus
,Stitch Images
,Trace Visualization
,Image Preprocessing
,Object Detection Model
,QR Code Generator
,Halo Visualization
,Perspective Correction
,Stability AI Inpainting
,Webhook Sink
,Label Visualization
,Pixel Color Count
,Triangle Visualization
,Keypoint Detection Model
,Slack Notification
,Detections Stabilizer
,Corner Visualization
,Byte Tracker
,Icon Visualization
,SIFT Comparison
,Pixelate Visualization
,Image Blur
,Instance Segmentation Model
,Image Threshold
,Reference Path Visualization
,Image Slicer
,Byte Tracker
,Identify Outliers
,Detection Offset
,Identify Changes
,Classification Label Visualization
,Polygon Visualization
,Keypoint Visualization
,Stability AI Outpainting
,Dot Visualization
,Email Notification
,Grid Visualization
,Bounding Box Visualization
,Detections Classes Replacement
,Ellipse Visualization
,Twilio SMS Notification
,Instance Segmentation Model
,Image Slicer
,SIFT Comparison
,Dominant Color
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Distance Measurement
in version v1
has.
Bindings
-
input
predictions
(Union[object_detection_prediction
,instance_segmentation_prediction
]): The output of a detection model describing the bounding boxes that will be used to measure the objects..reference_object_class_name
(string
): The class name of the reference object..reference_width
(float
): Width of the reference object in centimeters.reference_height
(float
): Height of the reference object in centimeters.pixel_ratio
(float
): The pixel-to-centimeter ratio of the input image, i.e. 1 centimeter = 100 pixels..
-
output
Example JSON definition of step Distance Measurement
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/distance_measurement@v1",
"predictions": "$steps.model.predictions",
"object_1_class_name": "car",
"object_2_class_name": "person",
"reference_axis": "vertical",
"calibration_method": "<block_does_not_provide_example>",
"reference_object_class_name": "reference-object",
"reference_width": 2.5,
"reference_height": 2.5,
"pixel_ratio": 100
}