Distance Measurement¶
Class: DistanceMeasurementBlockV1
Source: inference.core.workflows.core_steps.classical_cv.distance_measurement.v1.DistanceMeasurementBlockV1
Calculate the distance between two bounding boxes on a 2D plane, leveraging a perpendicular camera view and either a reference object or a pixel-to-unit scaling ratio for precise measurements.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/distance_measurement@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
object_1_class_name |
str |
The class name of the first object.. | ❌ |
object_2_class_name |
str |
The class name of the second object.. | ❌ |
reference_axis |
str |
The axis along which the distance will be measured.. | ❌ |
calibration_method |
str |
Select how to calibrate the measurement of distance between objects.. | ❌ |
reference_object_class_name |
str |
The class name of the reference object.. | ✅ |
reference_width |
float |
Width of the reference object in centimeters. | ✅ |
reference_height |
float |
Height of the reference object in centimeters. | ✅ |
pixel_ratio |
float |
The pixel-to-centimeter ratio of the input image, i.e. 1 centimeter = 100 pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Distance Measurement
in version v1
.
- inputs:
Instance Segmentation Model
,Identify Changes
,Twilio SMS Notification
,Dynamic Zone
,OpenAI
,Roboflow Dataset Upload
,Roboflow Custom Metadata
,Detections Classes Replacement
,VLM as Detector
,Gaze Detection
,Detections Stabilizer
,Detections Transformation
,Object Detection Model
,LMM For Classification
,Detections Stitch
,Keypoint Detection Model
,Llama 3.2 Vision
,OpenAI
,Roboflow Dataset Upload
,Instance Segmentation Model
,Camera Focus
,Byte Tracker
,YOLO-World Model
,Detections Filter
,Moondream2
,CSV Formatter
,Overlap Filter
,Byte Tracker
,Object Detection Model
,Stitch OCR Detections
,Florence-2 Model
,CogVLM
,Detections Consensus
,Template Matching
,Webhook Sink
,LMM
,Google Gemini
,Perspective Correction
,Email Notification
,Google Vision OCR
,Path Deviation
,Multi-Label Classification Model
,Velocity
,Single-Label Classification Model
,OCR Model
,Time in Zone
,Dynamic Crop
,Clip Comparison
,Model Monitoring Inference Aggregator
,Anthropic Claude
,VLM as Classifier
,Byte Tracker
,Line Counter
,Segment Anything 2 Model
,Cosine Similarity
,Detection Offset
,Path Deviation
,Time in Zone
,VLM as Detector
,Florence-2 Model
,Slack Notification
,Detections Merge
,Local File Sink
,Bounding Rectangle
- outputs:
Identify Changes
,Line Counter Visualization
,Grid Visualization
,Detections Stabilizer
,Object Detection Model
,Color Visualization
,Instance Segmentation Model
,Pixel Color Count
,Label Visualization
,Dot Visualization
,Byte Tracker
,Object Detection Model
,Bounding Box Visualization
,Detections Consensus
,Identify Outliers
,Anthropic Claude
,Corner Visualization
,SIFT Comparison
,Byte Tracker
,SIFT Comparison
,Detection Offset
,Keypoint Visualization
,Mask Visualization
,Image Threshold
,Halo Visualization
,Polygon Visualization
,Image Preprocessing
,Instance Segmentation Model
,Twilio SMS Notification
,Dynamic Zone
,Reference Path Visualization
,Blur Visualization
,Image Contours
,Pixelate Visualization
,Dominant Color
,Keypoint Detection Model
,Ellipse Visualization
,Byte Tracker
,Crop Visualization
,Stitch Images
,Stitch OCR Detections
,Image Slicer
,Webhook Sink
,Perspective Correction
,Email Notification
,Image Blur
,Triangle Visualization
,Trace Visualization
,Classification Label Visualization
,Keypoint Detection Model
,Absolute Static Crop
,Circle Visualization
,Slack Notification
,Image Slicer
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Distance Measurement
in version v1
has.
Bindings
-
input
predictions
(Union[object_detection_prediction
,instance_segmentation_prediction
]): The output of a detection model describing the bounding boxes that will be used to measure the objects..reference_object_class_name
(string
): The class name of the reference object..reference_width
(float
): Width of the reference object in centimeters.reference_height
(float
): Height of the reference object in centimeters.pixel_ratio
(float
): The pixel-to-centimeter ratio of the input image, i.e. 1 centimeter = 100 pixels..
-
output
Example JSON definition of step Distance Measurement
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/distance_measurement@v1",
"predictions": "$steps.model.predictions",
"object_1_class_name": "car",
"object_2_class_name": "person",
"reference_axis": "vertical",
"calibration_method": "<block_does_not_provide_example>",
"reference_object_class_name": "reference-object",
"reference_width": 2.5,
"reference_height": 2.5,
"pixel_ratio": 100
}