Dominant Color¶
Class: DominantColorBlockV1
Source: inference.core.workflows.core_steps.classical_cv.dominant_color.v1.DominantColorBlockV1
Extract the dominant color from an input image using K-means clustering.
This block identifies the most prevalent color in an image. Processing time is dependant on color complexity and image size. Most images should complete in under half a second.
The output is a list of RGB values representing the dominant color, making it easy to use in further processing or visualization tasks.
Note: The block operates on the assumption that the input image is in RGB format.
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/dominant_color@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
color_clusters |
int |
Number of dominant colors to identify. Higher values increase precision but may slow processing.. | ✅ |
max_iterations |
int |
Max number of iterations to perform. Higher values increase precision but may slow processing.. | ✅ |
target_size |
int |
Sets target for the smallest dimension of the downsampled image in pixels. Lower values increase speed but may reduce precision.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Dominant Color in version v1.
- inputs:
Grid Visualization,Line Counter Visualization,SIFT,Icon Visualization,Stability AI Inpainting,Distance Measurement,Circle Visualization,Polygon Zone Visualization,Template Matching,QR Code Generator,Image Slicer,Dot Visualization,Line Counter,Blur Visualization,Camera Calibration,Perspective Correction,Background Color Visualization,Mask Visualization,Camera Focus,SIFT Comparison,Dynamic Crop,Crop Visualization,Classification Label Visualization,Stability AI Outpainting,Image Preprocessing,Trace Visualization,Color Visualization,Morphological Transformation,Image Threshold,Depth Estimation,Relative Static Crop,Triangle Visualization,Reference Path Visualization,Ellipse Visualization,Stability AI Image Generation,Model Comparison Visualization,Polygon Visualization,Corner Visualization,Halo Visualization,Image Slicer,Stitch Images,Image Blur,Absolute Static Crop,SIFT Comparison,Bounding Box Visualization,Line Counter,Image Contours,Pixelate Visualization,Pixel Color Count,Label Visualization,Keypoint Visualization,Contrast Equalization,Image Convert Grayscale - outputs:
Pixel Color Count,Dynamic Crop
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Dominant Color in version v1 has.
Bindings
-
input
image(image): The input image for this step..color_clusters(integer): Number of dominant colors to identify. Higher values increase precision but may slow processing..max_iterations(integer): Max number of iterations to perform. Higher values increase precision but may slow processing..target_size(integer): Sets target for the smallest dimension of the downsampled image in pixels. Lower values increase speed but may reduce precision..
-
output
rgb_color(rgb_color): RGB color.
Example JSON definition of step Dominant Color in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/dominant_color@v1",
"image": "$inputs.image",
"color_clusters": 4,
"max_iterations": 100,
"target_size": 100
}