Dominant Color¶
Class: DominantColorBlockV1
Source: inference.core.workflows.core_steps.classical_cv.dominant_color.v1.DominantColorBlockV1
Extract the dominant color from an input image using K-means clustering.
This block identifies the most prevalent color in an image. Processing time is dependant on color complexity and image size. Most images should complete in under half a second.
The output is a list of RGB values representing the dominant color, making it easy to use in further processing or visualization tasks.
Note: The block operates on the assumption that the input image is in RGB format.
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/dominant_color@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
color_clusters |
int |
Number of dominant colors to identify. Higher values increase precision but may slow processing.. | ✅ |
max_iterations |
int |
Max number of iterations to perform. Higher values increase precision but may slow processing.. | ✅ |
target_size |
int |
Sets target for the smallest dimension of the downsampled image in pixels. Lower values increase speed but may reduce precision.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Dominant Color in version v1.
- inputs:
Line Counter,Blur Visualization,Dot Visualization,Image Contours,Perspective Correction,Polygon Zone Visualization,Bounding Box Visualization,QR Code Generator,Pixelate Visualization,Reference Path Visualization,Morphological Transformation,Trace Visualization,Distance Measurement,Image Threshold,Polygon Visualization,Dynamic Crop,Icon Visualization,Image Slicer,Stability AI Outpainting,Model Comparison Visualization,Contrast Equalization,Classification Label Visualization,Camera Focus,Stitch Images,Mask Visualization,Stability AI Inpainting,Relative Static Crop,Absolute Static Crop,Line Counter Visualization,SIFT Comparison,Circle Visualization,Template Matching,Ellipse Visualization,Image Convert Grayscale,Crop Visualization,Grid Visualization,Color Visualization,Image Blur,Image Preprocessing,Stability AI Image Generation,Keypoint Visualization,Camera Calibration,SIFT,Image Slicer,Depth Estimation,Background Subtraction,Line Counter,Label Visualization,Pixel Color Count,Background Color Visualization,Triangle Visualization,SIFT Comparison,Halo Visualization,Corner Visualization - outputs:
Dynamic Crop,Pixel Color Count
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Dominant Color in version v1 has.
Bindings
-
input
image(image): The input image for this step..color_clusters(integer): Number of dominant colors to identify. Higher values increase precision but may slow processing..max_iterations(integer): Max number of iterations to perform. Higher values increase precision but may slow processing..target_size(integer): Sets target for the smallest dimension of the downsampled image in pixels. Lower values increase speed but may reduce precision..
-
output
rgb_color(rgb_color): RGB color.
Example JSON definition of step Dominant Color in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/dominant_color@v1",
"image": "$inputs.image",
"color_clusters": 4,
"max_iterations": 100,
"target_size": 100
}