Dominant Color¶
Class: DominantColorBlockV1
Source: inference.core.workflows.core_steps.classical_cv.dominant_color.v1.DominantColorBlockV1
Extract the dominant color from an input image using K-means clustering.
This block identifies the most prevalent color in an image. Processing time is dependant on color complexity and image size. Most images should complete in under half a second.
The output is a list of RGB values representing the dominant color, making it easy to use in further processing or visualization tasks.
Note: The block operates on the assumption that the input image is in RGB format.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/dominant_color@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
color_clusters |
int |
Number of dominant colors to identify. Higher values increase precision but may slow processing.. | ✅ |
max_iterations |
int |
Max number of iterations to perform. Higher values increase precision but may slow processing.. | ✅ |
target_size |
int |
Sets target for the smallest dimension of the downsampled image in pixels. Lower values increase speed but may reduce precision.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Dominant Color
in version v1
.
- inputs:
Crop Visualization
,Stitch Images
,Image Slicer
,Relative Static Crop
,Ellipse Visualization
,Stability AI Inpainting
,Stability AI Image Generation
,Blur Visualization
,Circle Visualization
,Pixelate Visualization
,Model Comparison Visualization
,Stability AI Outpainting
,SIFT Comparison
,Bounding Box Visualization
,SIFT Comparison
,Line Counter
,Grid Visualization
,Background Color Visualization
,Pixel Color Count
,Image Slicer
,Image Contours
,Image Threshold
,Perspective Correction
,Label Visualization
,Camera Focus
,Triangle Visualization
,Dynamic Crop
,Camera Calibration
,Classification Label Visualization
,Reference Path Visualization
,Color Visualization
,Keypoint Visualization
,Halo Visualization
,Corner Visualization
,Line Counter Visualization
,Mask Visualization
,QR Code Generator
,SIFT
,Polygon Visualization
,Template Matching
,Dot Visualization
,Image Convert Grayscale
,Icon Visualization
,Depth Estimation
,Distance Measurement
,Image Blur
,Trace Visualization
,Line Counter
,Absolute Static Crop
,Image Preprocessing
,Polygon Zone Visualization
- outputs:
Dynamic Crop
,Pixel Color Count
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Dominant Color
in version v1
has.
Bindings
-
input
image
(image
): The input image for this step..color_clusters
(integer
): Number of dominant colors to identify. Higher values increase precision but may slow processing..max_iterations
(integer
): Max number of iterations to perform. Higher values increase precision but may slow processing..target_size
(integer
): Sets target for the smallest dimension of the downsampled image in pixels. Lower values increase speed but may reduce precision..
-
output
rgb_color
(rgb_color
): RGB color.
Example JSON definition of step Dominant Color
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/dominant_color@v1",
"image": "$inputs.image",
"color_clusters": 4,
"max_iterations": 100,
"target_size": 100
}