Dominant Color¶
Class: DominantColorBlockV1
Source: inference.core.workflows.core_steps.classical_cv.dominant_color.v1.DominantColorBlockV1
Extract the dominant color from an input image using K-means clustering.
This block identifies the most prevalent color in an image. Processing time is dependant on color complexity and image size. Most images should complete in under half a second.
The output is a list of RGB values representing the dominant color, making it easy to use in further processing or visualization tasks.
Note: The block operates on the assumption that the input image is in RGB format.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/dominant_color@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
color_clusters |
int |
Number of dominant colors to identify. Higher values increase precision but may slow processing.. | ✅ |
max_iterations |
int |
Max number of iterations to perform. Higher values increase precision but may slow processing.. | ✅ |
target_size |
int |
Sets target for the smallest dimension of the downsampled image in pixels. Lower values increase speed but may reduce precision.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Dominant Color
in version v1
.
- inputs:
Camera Calibration
,Image Preprocessing
,Image Contours
,Line Counter Visualization
,Halo Visualization
,Line Counter
,Corner Visualization
,Stability AI Image Generation
,Model Comparison Visualization
,Pixel Color Count
,Keypoint Visualization
,Crop Visualization
,Depth Estimation
,SIFT
,Image Blur
,Stitch Images
,Blur Visualization
,Image Convert Grayscale
,Background Color Visualization
,Bounding Box Visualization
,Image Slicer
,Dynamic Crop
,Distance Measurement
,Line Counter
,Perspective Correction
,Circle Visualization
,Triangle Visualization
,Dot Visualization
,SIFT Comparison
,Template Matching
,Mask Visualization
,Image Slicer
,Ellipse Visualization
,Color Visualization
,Stability AI Inpainting
,Classification Label Visualization
,Absolute Static Crop
,Image Threshold
,Pixelate Visualization
,Trace Visualization
,Camera Focus
,Label Visualization
,Grid Visualization
,Stability AI Outpainting
,Polygon Visualization
,SIFT Comparison
,Relative Static Crop
,Reference Path Visualization
,Polygon Zone Visualization
- outputs:
Pixel Color Count
,Dynamic Crop
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Dominant Color
in version v1
has.
Bindings
-
input
image
(image
): The input image for this step..color_clusters
(integer
): Number of dominant colors to identify. Higher values increase precision but may slow processing..max_iterations
(integer
): Max number of iterations to perform. Higher values increase precision but may slow processing..target_size
(integer
): Sets target for the smallest dimension of the downsampled image in pixels. Lower values increase speed but may reduce precision..
-
output
rgb_color
(rgb_color
): RGB color.
Example JSON definition of step Dominant Color
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/dominant_color@v1",
"image": "$inputs.image",
"color_clusters": 4,
"max_iterations": 100,
"target_size": 100
}