Dominant Color¶
Class: DominantColorBlockV1
Source: inference.core.workflows.core_steps.classical_cv.dominant_color.v1.DominantColorBlockV1
Extract the dominant color from an input image using K-means clustering.
This block identifies the most prevalent color in an image. Processing time is dependant on color complexity and image size. Most images should complete in under half a second.
The output is a list of RGB values representing the dominant color, making it easy to use in further processing or visualization tasks.
Note: The block operates on the assumption that the input image is in RGB format.
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/dominant_color@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
color_clusters |
int |
Number of dominant colors to identify. Higher values increase precision but may slow processing.. | ✅ |
max_iterations |
int |
Max number of iterations to perform. Higher values increase precision but may slow processing.. | ✅ |
target_size |
int |
Sets target for the smallest dimension of the downsampled image in pixels. Lower values increase speed but may reduce precision.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Dominant Color in version v1.
- inputs:
Template Matching,Absolute Static Crop,Line Counter,Line Counter,Relative Static Crop,Polygon Visualization,Keypoint Visualization,Icon Visualization,Blur Visualization,Trace Visualization,Color Visualization,Image Contours,Polygon Zone Visualization,Camera Focus,Halo Visualization,Bounding Box Visualization,SIFT,Camera Calibration,Triangle Visualization,Classification Label Visualization,Background Color Visualization,Dynamic Crop,Dot Visualization,Pixelate Visualization,Stability AI Inpainting,Image Threshold,Reference Path Visualization,Corner Visualization,Ellipse Visualization,Image Slicer,Stitch Images,Crop Visualization,Morphological Transformation,Grid Visualization,Image Preprocessing,Mask Visualization,Line Counter Visualization,SIFT Comparison,SIFT Comparison,QR Code Generator,Pixel Color Count,Depth Estimation,Image Slicer,Perspective Correction,Image Convert Grayscale,Stability AI Image Generation,Distance Measurement,Contrast Equalization,Label Visualization,Image Blur,Model Comparison Visualization,Circle Visualization,Stability AI Outpainting - outputs:
Dynamic Crop,Pixel Color Count
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Dominant Color in version v1 has.
Bindings
-
input
image(image): The input image for this step..color_clusters(integer): Number of dominant colors to identify. Higher values increase precision but may slow processing..max_iterations(integer): Max number of iterations to perform. Higher values increase precision but may slow processing..target_size(integer): Sets target for the smallest dimension of the downsampled image in pixels. Lower values increase speed but may reduce precision..
-
output
rgb_color(rgb_color): RGB color.
Example JSON definition of step Dominant Color in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/dominant_color@v1",
"image": "$inputs.image",
"color_clusters": 4,
"max_iterations": 100,
"target_size": 100
}