Dominant Color¶
Class: DominantColorBlockV1
Source: inference.core.workflows.core_steps.classical_cv.dominant_color.v1.DominantColorBlockV1
Extract the dominant color from an input image using K-means clustering.
This block identifies the most prevalent color in an image. Processing time is dependant on color complexity and image size. Most images should complete in under half a second.
The output is a list of RGB values representing the dominant color, making it easy to use in further processing or visualization tasks.
Note: The block operates on the assumption that the input image is in RGB format.
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/dominant_color@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
color_clusters |
int |
Number of dominant colors to identify. Higher values increase precision but may slow processing.. | ✅ |
max_iterations |
int |
Max number of iterations to perform. Higher values increase precision but may slow processing.. | ✅ |
target_size |
int |
Sets target for the smallest dimension of the downsampled image in pixels. Lower values increase speed but may reduce precision.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Dominant Color in version v1.
- inputs:
Blur Visualization,Classification Label Visualization,Circle Visualization,SIFT Comparison,Crop Visualization,Image Contours,Relative Static Crop,Grid Visualization,Image Preprocessing,Perspective Correction,Ellipse Visualization,Absolute Static Crop,Stitch Images,Triangle Visualization,Contrast Equalization,Stability AI Inpainting,QR Code Generator,Image Slicer,Background Color Visualization,Polygon Zone Visualization,Stability AI Image Generation,Template Matching,Depth Estimation,Distance Measurement,Dot Visualization,Bounding Box Visualization,Camera Focus,Line Counter Visualization,Morphological Transformation,SIFT,Reference Path Visualization,Halo Visualization,SIFT Comparison,Icon Visualization,Image Blur,Image Slicer,Polygon Visualization,Pixelate Visualization,Image Threshold,Image Convert Grayscale,Color Visualization,Line Counter,Label Visualization,Trace Visualization,Pixel Color Count,Dynamic Crop,Line Counter,Model Comparison Visualization,Corner Visualization,Camera Calibration,Mask Visualization,Keypoint Visualization,Stability AI Outpainting - outputs:
Dynamic Crop,Pixel Color Count
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Dominant Color in version v1 has.
Bindings
-
input
image(image): The input image for this step..color_clusters(integer): Number of dominant colors to identify. Higher values increase precision but may slow processing..max_iterations(integer): Max number of iterations to perform. Higher values increase precision but may slow processing..target_size(integer): Sets target for the smallest dimension of the downsampled image in pixels. Lower values increase speed but may reduce precision..
-
output
rgb_color(rgb_color): RGB color.
Example JSON definition of step Dominant Color in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/dominant_color@v1",
"image": "$inputs.image",
"color_clusters": 4,
"max_iterations": 100,
"target_size": 100
}