Dot Visualization¶
Class: DotVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.dot.v1.DotVisualizationBlockV1
The DotVisualization
block draws dots on an image at specific coordinates
based on provided detections using Supervision's sv.DotAnnotator
.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/dot_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
color_palette |
str |
Select a color palette for the visualised elements.. | ✅ |
palette_size |
int |
Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes.. | ✅ |
custom_colors |
List[str] |
Define a list of custom colors for bounding boxes in HEX format.. | ✅ |
color_axis |
str |
Choose how bounding box colors are assigned.. | ✅ |
position |
str |
The anchor position for placing the dot.. | ✅ |
radius |
int |
Radius of the dot in pixels.. | ✅ |
outline_thickness |
int |
Thickness of the outline of the dot in pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Dot Visualization
in version v1
.
- inputs:
Identify Changes
,Relative Static Crop
,Background Color Visualization
,Line Counter Visualization
,OpenAI
,Roboflow Dataset Upload
,Grid Visualization
,Gaze Detection
,Detections Stabilizer
,Detections Transformation
,Object Detection Model
,LMM For Classification
,Llama 3.2 Vision
,Camera Focus
,Color Visualization
,Roboflow Dataset Upload
,Instance Segmentation Model
,Pixel Color Count
,Label Visualization
,YOLO-World Model
,Detections Filter
,Moondream2
,CSV Formatter
,Dot Visualization
,Overlap Filter
,Byte Tracker
,Object Detection Model
,Bounding Box Visualization
,Detections Consensus
,Template Matching
,Single-Label Classification Model
,OCR Model
,Google Vision OCR
,Path Deviation
,JSON Parser
,Dynamic Crop
,Clip Comparison
,Identify Outliers
,Model Comparison Visualization
,Anthropic Claude
,Depth Estimation
,Corner Visualization
,SIFT Comparison
,SIFT Comparison
,Byte Tracker
,Line Counter
,Camera Calibration
,Detection Offset
,Keypoint Visualization
,Mask Visualization
,Image Threshold
,VLM as Detector
,Halo Visualization
,Florence-2 Model
,Polygon Zone Visualization
,Google Gemini
,Clip Comparison
,Polygon Visualization
,Image Preprocessing
,Bounding Rectangle
,Instance Segmentation Model
,SIFT
,Twilio SMS Notification
,Dynamic Zone
,Reference Path Visualization
,Roboflow Custom Metadata
,Blur Visualization
,Image Contours
,VLM as Detector
,Detections Classes Replacement
,Pixelate Visualization
,Keypoint Detection Model
,Detections Stitch
,OpenAI
,Ellipse Visualization
,Byte Tracker
,Crop Visualization
,Stitch Images
,Line Counter
,Stitch OCR Detections
,Florence-2 Model
,CogVLM
,Image Slicer
,LMM
,Webhook Sink
,Perspective Correction
,Email Notification
,Multi-Label Classification Model
,Size Measurement
,Dimension Collapse
,Velocity
,Image Blur
,Stability AI Image Generation
,Time in Zone
,Image Convert Grayscale
,Stability AI Inpainting
,Model Monitoring Inference Aggregator
,Triangle Visualization
,Classification Label Visualization
,Trace Visualization
,Keypoint Detection Model
,Distance Measurement
,Buffer
,VLM as Classifier
,Segment Anything 2 Model
,Path Deviation
,Time in Zone
,Absolute Static Crop
,VLM as Classifier
,Circle Visualization
,Slack Notification
,Detections Merge
,Local File Sink
,Image Slicer
- outputs:
Relative Static Crop
,Background Color Visualization
,Line Counter Visualization
,OpenAI
,Roboflow Dataset Upload
,Gaze Detection
,Barcode Detection
,Detections Stabilizer
,LMM For Classification
,Object Detection Model
,Llama 3.2 Vision
,Camera Focus
,Color Visualization
,Roboflow Dataset Upload
,Instance Segmentation Model
,Pixel Color Count
,Label Visualization
,YOLO-World Model
,Moondream2
,SmolVLM2
,Dot Visualization
,Object Detection Model
,Bounding Box Visualization
,Template Matching
,Single-Label Classification Model
,OCR Model
,Google Vision OCR
,Dynamic Crop
,Clip Comparison
,Model Comparison Visualization
,Anthropic Claude
,Depth Estimation
,Corner Visualization
,Byte Tracker
,Qwen2.5-VL
,Multi-Label Classification Model
,SIFT Comparison
,Camera Calibration
,QR Code Detection
,Keypoint Visualization
,VLM as Detector
,Image Threshold
,Florence-2 Model
,Mask Visualization
,Halo Visualization
,Polygon Zone Visualization
,Google Gemini
,Clip Comparison
,Polygon Visualization
,Image Preprocessing
,Instance Segmentation Model
,SIFT
,Reference Path Visualization
,CLIP Embedding Model
,Blur Visualization
,Image Contours
,VLM as Detector
,Pixelate Visualization
,Dominant Color
,Keypoint Detection Model
,Detections Stitch
,OpenAI
,Ellipse Visualization
,Crop Visualization
,Stitch Images
,Florence-2 Model
,CogVLM
,LMM
,Image Slicer
,Perspective Correction
,Multi-Label Classification Model
,Image Blur
,Stability AI Image Generation
,Time in Zone
,Image Convert Grayscale
,Stability AI Inpainting
,Triangle Visualization
,Classification Label Visualization
,Keypoint Detection Model
,Trace Visualization
,Single-Label Classification Model
,Buffer
,VLM as Classifier
,Segment Anything 2 Model
,Absolute Static Crop
,VLM as Classifier
,Circle Visualization
,Image Slicer
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Dot Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions
(Union[object_detection_prediction
,instance_segmentation_prediction
,keypoint_detection_prediction
]): Model predictions to visualize..color_palette
(string
): Select a color palette for the visualised elements..palette_size
(integer
): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..custom_colors
(list_of_values
): Define a list of custom colors for bounding boxes in HEX format..color_axis
(string
): Choose how bounding box colors are assigned..position
(string
): The anchor position for placing the dot..radius
(integer
): Radius of the dot in pixels..outline_thickness
(integer
): Thickness of the outline of the dot in pixels..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Dot Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/dot_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.object_detection_model.predictions",
"color_palette": "DEFAULT",
"palette_size": 10,
"custom_colors": [
"#FF0000",
"#00FF00",
"#0000FF"
],
"color_axis": "CLASS",
"position": "CENTER",
"radius": 4,
"outline_thickness": 2
}