Dynamic Crop¶
Class: DynamicCropBlockV1
Source: inference.core.workflows.core_steps.transformations.dynamic_crop.v1.DynamicCropBlockV1
Create dynamic crops from an image based on detections from detections-based model.
This is useful when placed after an ObjectDetection block as part of a multi-stage workflow. For example, you could use an ObjectDetection block to detect objects, then the DynamicCropBlock block to crop objects, then an OCR block to run character recognition on each of the individual cropped regions.
In addition, for instance segmentation predictions (which provide segmentation mask for each
bounding box) it is possible to remove background in the crops, outside of detected instances.
To enable that functionality, set mask_opacity
to positive value and optionally tune
background_color
.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/dynamic_crop@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
mask_opacity |
float |
For instance segmentation, mask_opacity can be used to control background removal. Opacity 1.0 removes the background, while 0.0 leaves the crop unchanged.. | ✅ |
background_color |
Union[Tuple[int, int, int], str] |
For background removal based on segmentation mask, new background color can be selected. Can be a hex string (like '#431112') RGB string (like '(128, 32, 64)') or a RGB tuple (like (18, 17, 67)).. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Dynamic Crop
in version v1
.
- inputs:
Byte Tracker
,Polygon Zone Visualization
,Time in Zone
,Identify Outliers
,LMM For Classification
,VLM as Classifier
,Dot Visualization
,Morphological Transformation
,Blur Visualization
,Perspective Correction
,CSV Formatter
,Corner Visualization
,LMM
,PTZ Tracking (ONVIF)
.md),Florence-2 Model
,Grid Visualization
,Image Threshold
,Florence-2 Model
,Halo Visualization
,OpenAI
,Keypoint Detection Model
,Multi-Label Classification Model
,Detections Combine
,Detection Offset
,CogVLM
,EasyOCR
,Byte Tracker
,Line Counter Visualization
,Stitch OCR Detections
,VLM as Detector
,Stability AI Outpainting
,Twilio SMS Notification
,Keypoint Detection Model
,Google Vision OCR
,Identify Changes
,Camera Focus
,Roboflow Dataset Upload
,SIFT
,Instance Segmentation Model
,Clip Comparison
,Image Slicer
,Image Convert Grayscale
,Keypoint Visualization
,Email Notification
,Template Matching
,OCR Model
,Detections Stabilizer
,Bounding Box Visualization
,Instance Segmentation Model
,Llama 3.2 Vision
,Reference Path Visualization
,Dynamic Crop
,Roboflow Dataset Upload
,Mask Visualization
,Image Preprocessing
,Background Color Visualization
,Local File Sink
,Webhook Sink
,Camera Calibration
,OpenAI
,Depth Estimation
,Image Slicer
,QR Code Generator
,Detections Stitch
,Trace Visualization
,Time in Zone
,Velocity
,Dominant Color
,Object Detection Model
,Detections Transformation
,Contrast Equalization
,Byte Tracker
,Overlap Filter
,Crop Visualization
,Stability AI Image Generation
,Moondream2
,SIFT Comparison
,Roboflow Custom Metadata
,Object Detection Model
,Model Comparison Visualization
,Pixelate Visualization
,Dynamic Zone
,Model Monitoring Inference Aggregator
,Gaze Detection
,Line Counter
,Anthropic Claude
,Time in Zone
,Relative Static Crop
,Image Contours
,Polygon Visualization
,Path Deviation
,OpenAI
,Slack Notification
,Triangle Visualization
,Detections Filter
,YOLO-World Model
,Classification Label Visualization
,Detections Classes Replacement
,Bounding Rectangle
,Circle Visualization
,Image Blur
,Label Visualization
,VLM as Detector
,Google Gemini
,Absolute Static Crop
,Stability AI Inpainting
,Icon Visualization
,Ellipse Visualization
,Color Visualization
,Detections Merge
,Path Deviation
,Single-Label Classification Model
,Detections Consensus
,Stitch Images
,Segment Anything 2 Model
- outputs:
Byte Tracker
,VLM as Classifier
,LMM For Classification
,Polygon Zone Visualization
,Distance Measurement
,Time in Zone
,Dot Visualization
,Morphological Transformation
,Size Measurement
,Perspective Correction
,Blur Visualization
,Clip Comparison
,Corner Visualization
,LMM
,Pixel Color Count
,Florence-2 Model
,PTZ Tracking (ONVIF)
.md),Image Threshold
,Florence-2 Model
,Halo Visualization
,OpenAI
,Keypoint Detection Model
,Multi-Label Classification Model
,CogVLM
,Detections Combine
,Detection Offset
,EasyOCR
,Byte Tracker
,Line Counter Visualization
,Perception Encoder Embedding Model
,Stitch OCR Detections
,VLM as Detector
,Stability AI Outpainting
,VLM as Classifier
,Keypoint Detection Model
,Google Vision OCR
,CLIP Embedding Model
,Camera Focus
,Roboflow Dataset Upload
,SIFT
,Instance Segmentation Model
,Clip Comparison
,Image Slicer
,Image Convert Grayscale
,Keypoint Visualization
,Template Matching
,OCR Model
,Llama 3.2 Vision
,Bounding Box Visualization
,Detections Stabilizer
,Instance Segmentation Model
,Line Counter
,Reference Path Visualization
,Dynamic Crop
,Roboflow Dataset Upload
,Mask Visualization
,Image Preprocessing
,Qwen2.5-VL
,Background Color Visualization
,OpenAI
,Camera Calibration
,Depth Estimation
,Image Slicer
,Detections Stitch
,Dominant Color
,Trace Visualization
,Time in Zone
,Velocity
,Object Detection Model
,Detections Transformation
,Contrast Equalization
,Buffer
,Byte Tracker
,Overlap Filter
,Crop Visualization
,Stability AI Image Generation
,Stitch Images
,SmolVLM2
,SIFT Comparison
,Roboflow Custom Metadata
,Object Detection Model
,Model Comparison Visualization
,Pixelate Visualization
,Dynamic Zone
,Model Monitoring Inference Aggregator
,Gaze Detection
,Line Counter
,Anthropic Claude
,Time in Zone
,QR Code Detection
,Relative Static Crop
,Polygon Visualization
,Barcode Detection
,Image Contours
,OpenAI
,Path Deviation
,Triangle Visualization
,Detections Filter
,YOLO-World Model
,Single-Label Classification Model
,Classification Label Visualization
,Detections Classes Replacement
,Bounding Rectangle
,Circle Visualization
,Image Blur
,Label Visualization
,VLM as Detector
,Google Gemini
,Multi-Label Classification Model
,Stability AI Inpainting
,Absolute Static Crop
,Icon Visualization
,Ellipse Visualization
,Color Visualization
,Detections Merge
,Path Deviation
,Single-Label Classification Model
,Detections Consensus
,Moondream2
,Segment Anything 2 Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Dynamic Crop
in version v1
has.
Bindings
-
input
images
(image
): The input image for this step..predictions
(Union[object_detection_prediction
,instance_segmentation_prediction
,keypoint_detection_prediction
]): Detection model output containing bounding boxes for cropping..mask_opacity
(float_zero_to_one
): For instance segmentation, mask_opacity can be used to control background removal. Opacity 1.0 removes the background, while 0.0 leaves the crop unchanged..background_color
(Union[rgb_color
,string
]): For background removal based on segmentation mask, new background color can be selected. Can be a hex string (like '#431112') RGB string (like '(128, 32, 64)') or a RGB tuple (like (18, 17, 67))..
-
output
crops
(image
): Image in workflows.predictions
(Union[object_detection_prediction
,instance_segmentation_prediction
,keypoint_detection_prediction
]): Prediction with detected bounding boxes in form of sv.Detections(...) object ifobject_detection_prediction
or Prediction with detected bounding boxes and segmentation masks in form of sv.Detections(...) object ifinstance_segmentation_prediction
or Prediction with detected bounding boxes and detected keypoints in form of sv.Detections(...) object ifkeypoint_detection_prediction
.
Example JSON definition of step Dynamic Crop
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/dynamic_crop@v1",
"images": "$inputs.image",
"predictions": "$steps.my_object_detection_model.predictions",
"mask_opacity": "<block_does_not_provide_example>",
"background_color": "#431112"
}