Florence-2 Model¶
v2¶
Class: Florence2BlockV2
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.florence2.v2.Florence2BlockV2
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Dedicated inference server required (GPU recommended) - you may want to use dedicated deployment
This Workflow block introduces Florence 2, a Visual Language Model (VLM) capable of performing a wide range of tasks, including:
-
Object Detection
-
Instance Segmentation
-
Image Captioning
-
Optical Character Recognition (OCR)
-
and more...
Below is a comprehensive list of tasks supported by the model, along with descriptions on how to utilize their outputs within the Workflows ecosystem:
Task Descriptions:
-
Custom Prompt (
custom
) - Use free-form prompt to generate a response. Useful with finetuned models. -
Text Recognition (OCR) (
ocr
) - Model recognizes text in the image -
Text Detection & Recognition (OCR) (
ocr-with-text-detection
) - Model detects text regions in the image, and then performs OCR on each detected region -
Captioning (short) (
caption
) - Model provides a short description of the image -
Captioning (
detailed-caption
) - Model provides a long description of the image -
Captioning (long) (
more-detailed-caption
) - Model provides a very long description of the image -
Unprompted Object Detection (
object-detection
) - Model detects and returns the bounding boxes for prominent objects in the image -
Object Detection (
open-vocabulary-object-detection
) - Model detects and returns the bounding boxes for the provided classes -
Detection & Captioning (
object-detection-and-caption
) - Model detects prominent objects and captions them -
Prompted Object Detection (
phrase-grounded-object-detection
) - Based on the textual prompt, model detects objects matching the descriptions -
Prompted Instance Segmentation (
phrase-grounded-instance-segmentation
) - Based on the textual prompt, model segments objects matching the descriptions -
Segment Bounding Box (
detection-grounded-instance-segmentation
) - Model segments the object in the provided bounding box into a polygon -
Classification of Bounding Box (
detection-grounded-classification
) - Model classifies the object inside the provided bounding box -
Captioning of Bounding Box (
detection-grounded-caption
) - Model captions the object in the provided bounding box -
Text Recognition (OCR) for Bounding Box (
detection-grounded-ocr
) - Model performs OCR on the text inside the provided bounding box -
Regions of Interest proposal (
region-proposal
) - Model proposes Regions of Interest (Bounding Boxes) in the image
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/florence_2@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the Florence-2 model. | ✅ |
classes |
List[str] |
List of classes to be used. | ✅ |
grounding_detection |
Optional[List[float], List[int]] |
Detection to ground Florence-2 model. May be statically provided bounding box [left_top_x, left_top_y, right_bottom_x, right_bottom_y] or result of object-detection model. If the latter is true, one box will be selected based on grounding_selection_mode .. |
✅ |
grounding_selection_mode |
str |
. | ❌ |
model_id |
str |
Model to be used. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Florence-2 Model
in version v2
.
- inputs:
Stitch Images
,Pixelate Visualization
,Multi-Label Classification Model
,LMM For Classification
,Path Deviation
,Keypoint Detection Model
,Gaze Detection
,Instance Segmentation Model
,Blur Visualization
,Single-Label Classification Model
,Mask Visualization
,OCR Model
,Object Detection Model
,SIFT
,Line Counter
,Detections Filter
,YOLO-World Model
,Model Monitoring Inference Aggregator
,Polygon Visualization
,Halo Visualization
,VLM as Detector
,Grid Visualization
,Google Vision OCR
,Model Comparison Visualization
,Email Notification
,Camera Focus
,CogVLM
,Image Threshold
,Byte Tracker
,Keypoint Visualization
,Detections Classes Replacement
,Template Matching
,Image Preprocessing
,Detection Offset
,Roboflow Dataset Upload
,Slack Notification
,Stitch OCR Detections
,Relative Static Crop
,Background Color Visualization
,Clip Comparison
,Bounding Box Visualization
,Ellipse Visualization
,Image Contours
,Label Visualization
,Classification Label Visualization
,Line Counter Visualization
,Byte Tracker
,LMM
,Stability AI Inpainting
,Reference Path Visualization
,VLM as Detector
,Dynamic Crop
,Byte Tracker
,Triangle Visualization
,Bounding Rectangle
,Absolute Static Crop
,Object Detection Model
,Time in Zone
,Florence-2 Model
,Detections Stitch
,SIFT Comparison
,Keypoint Detection Model
,Corner Visualization
,Perspective Correction
,Local File Sink
,Polygon Zone Visualization
,VLM as Classifier
,Dimension Collapse
,Image Slicer
,Trace Visualization
,Webhook Sink
,OpenAI
,Twilio SMS Notification
,Roboflow Custom Metadata
,Size Measurement
,Detections Consensus
,Crop Visualization
,Instance Segmentation Model
,Buffer
,Roboflow Dataset Upload
,Clip Comparison
,Anthropic Claude
,Dynamic Zone
,Image Blur
,Circle Visualization
,Image Convert Grayscale
,Dot Visualization
,Google Gemini
,Segment Anything 2 Model
,Florence-2 Model
,Time in Zone
,Detections Stabilizer
,OpenAI
,Path Deviation
,Color Visualization
,CSV Formatter
,Llama 3.2 Vision
,Detections Transformation
- outputs:
Path Deviation
,LMM For Classification
,Keypoint Detection Model
,Line Counter
,Instance Segmentation Model
,CLIP Embedding Model
,Mask Visualization
,Object Detection Model
,Line Counter
,YOLO-World Model
,Model Monitoring Inference Aggregator
,Cache Get
,Polygon Visualization
,Halo Visualization
,VLM as Detector
,Grid Visualization
,Google Vision OCR
,Model Comparison Visualization
,Email Notification
,CogVLM
,Image Threshold
,Keypoint Visualization
,Image Preprocessing
,Roboflow Dataset Upload
,Slack Notification
,Background Color Visualization
,Clip Comparison
,Bounding Box Visualization
,Ellipse Visualization
,Classification Label Visualization
,Label Visualization
,Line Counter Visualization
,LMM
,Stability AI Inpainting
,Reference Path Visualization
,VLM as Detector
,Dynamic Crop
,Triangle Visualization
,Object Detection Model
,Distance Measurement
,Time in Zone
,Detections Stitch
,Florence-2 Model
,SIFT Comparison
,Keypoint Detection Model
,Corner Visualization
,Perspective Correction
,Local File Sink
,Polygon Zone Visualization
,VLM as Classifier
,Twilio SMS Notification
,Trace Visualization
,Webhook Sink
,Size Measurement
,OpenAI
,Roboflow Custom Metadata
,Detections Consensus
,Cache Set
,Crop Visualization
,Instance Segmentation Model
,Buffer
,Roboflow Dataset Upload
,Clip Comparison
,VLM as Classifier
,Anthropic Claude
,Image Blur
,Circle Visualization
,Dot Visualization
,Google Gemini
,Segment Anything 2 Model
,JSON Parser
,Florence-2 Model
,Time in Zone
,Path Deviation
,OpenAI
,Color Visualization
,Pixel Color Count
,Llama 3.2 Vision
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Florence-2 Model
in version v2
has.
Bindings
-
input
images
(image
): The image to infer on.prompt
(string
): Text prompt to the Florence-2 model.classes
(list_of_values
): List of classes to be used.grounding_detection
(Union[instance_segmentation_prediction
,keypoint_detection_prediction
,list_of_values
,object_detection_prediction
]): Detection to ground Florence-2 model. May be statically provided bounding box[left_top_x, left_top_y, right_bottom_x, right_bottom_y]
or result of object-detection model. If the latter is true, one box will be selected based ongrounding_selection_mode
..model_id
(roboflow_model_id
): Model to be used.
-
output
raw_output
(Union[string
,language_model_output
]): String value ifstring
or LLM / VLM output iflanguage_model_output
.parsed_output
(dictionary
): Dictionary.classes
(list_of_values
): List of values of any type.
Example JSON definition of step Florence-2 Model
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/florence_2@v2",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"classes": [
"class-a",
"class-b"
],
"grounding_detection": "$steps.detection.predictions",
"grounding_selection_mode": "first",
"model_id": "florence-2-base"
}
v1¶
Class: Florence2BlockV1
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.florence2.v1.Florence2BlockV1
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Dedicated inference server required (GPU recommended) - you may want to use dedicated deployment
This Workflow block introduces Florence 2, a Visual Language Model (VLM) capable of performing a wide range of tasks, including:
-
Object Detection
-
Instance Segmentation
-
Image Captioning
-
Optical Character Recognition (OCR)
-
and more...
Below is a comprehensive list of tasks supported by the model, along with descriptions on how to utilize their outputs within the Workflows ecosystem:
Task Descriptions:
-
Custom Prompt (
custom
) - Use free-form prompt to generate a response. Useful with finetuned models. -
Text Recognition (OCR) (
ocr
) - Model recognizes text in the image -
Text Detection & Recognition (OCR) (
ocr-with-text-detection
) - Model detects text regions in the image, and then performs OCR on each detected region -
Captioning (short) (
caption
) - Model provides a short description of the image -
Captioning (
detailed-caption
) - Model provides a long description of the image -
Captioning (long) (
more-detailed-caption
) - Model provides a very long description of the image -
Unprompted Object Detection (
object-detection
) - Model detects and returns the bounding boxes for prominent objects in the image -
Object Detection (
open-vocabulary-object-detection
) - Model detects and returns the bounding boxes for the provided classes -
Detection & Captioning (
object-detection-and-caption
) - Model detects prominent objects and captions them -
Prompted Object Detection (
phrase-grounded-object-detection
) - Based on the textual prompt, model detects objects matching the descriptions -
Prompted Instance Segmentation (
phrase-grounded-instance-segmentation
) - Based on the textual prompt, model segments objects matching the descriptions -
Segment Bounding Box (
detection-grounded-instance-segmentation
) - Model segments the object in the provided bounding box into a polygon -
Classification of Bounding Box (
detection-grounded-classification
) - Model classifies the object inside the provided bounding box -
Captioning of Bounding Box (
detection-grounded-caption
) - Model captions the object in the provided bounding box -
Text Recognition (OCR) for Bounding Box (
detection-grounded-ocr
) - Model performs OCR on the text inside the provided bounding box -
Regions of Interest proposal (
region-proposal
) - Model proposes Regions of Interest (Bounding Boxes) in the image
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/florence_2@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the Florence-2 model. | ✅ |
classes |
List[str] |
List of classes to be used. | ✅ |
grounding_detection |
Optional[List[float], List[int]] |
Detection to ground Florence-2 model. May be statically provided bounding box [left_top_x, left_top_y, right_bottom_x, right_bottom_y] or result of object-detection model. If the latter is true, one box will be selected based on grounding_selection_mode .. |
✅ |
grounding_selection_mode |
str |
. | ❌ |
model_version |
str |
Model to be used. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Florence-2 Model
in version v1
.
- inputs:
Stitch Images
,Pixelate Visualization
,Multi-Label Classification Model
,LMM For Classification
,Path Deviation
,Keypoint Detection Model
,Gaze Detection
,Instance Segmentation Model
,Blur Visualization
,Single-Label Classification Model
,Mask Visualization
,OCR Model
,Object Detection Model
,SIFT
,Line Counter
,Detections Filter
,YOLO-World Model
,Model Monitoring Inference Aggregator
,Polygon Visualization
,Halo Visualization
,VLM as Detector
,Grid Visualization
,Google Vision OCR
,Model Comparison Visualization
,Email Notification
,Camera Focus
,CogVLM
,Image Threshold
,Byte Tracker
,Keypoint Visualization
,Detections Classes Replacement
,Template Matching
,Image Preprocessing
,Detection Offset
,Roboflow Dataset Upload
,Slack Notification
,Stitch OCR Detections
,Relative Static Crop
,Background Color Visualization
,Clip Comparison
,Bounding Box Visualization
,Ellipse Visualization
,Image Contours
,Label Visualization
,Classification Label Visualization
,Line Counter Visualization
,Byte Tracker
,LMM
,Stability AI Inpainting
,Reference Path Visualization
,VLM as Detector
,Dynamic Crop
,Byte Tracker
,Triangle Visualization
,Bounding Rectangle
,Absolute Static Crop
,Object Detection Model
,Time in Zone
,Florence-2 Model
,Detections Stitch
,SIFT Comparison
,Keypoint Detection Model
,Corner Visualization
,Perspective Correction
,Local File Sink
,Polygon Zone Visualization
,VLM as Classifier
,Dimension Collapse
,Image Slicer
,Trace Visualization
,Webhook Sink
,OpenAI
,Twilio SMS Notification
,Roboflow Custom Metadata
,Size Measurement
,Detections Consensus
,Crop Visualization
,Instance Segmentation Model
,Buffer
,Roboflow Dataset Upload
,Clip Comparison
,Anthropic Claude
,Dynamic Zone
,Image Blur
,Circle Visualization
,Image Convert Grayscale
,Dot Visualization
,Google Gemini
,Segment Anything 2 Model
,Florence-2 Model
,Time in Zone
,Detections Stabilizer
,OpenAI
,Path Deviation
,Color Visualization
,CSV Formatter
,Llama 3.2 Vision
,Detections Transformation
- outputs:
Path Deviation
,LMM For Classification
,Keypoint Detection Model
,Line Counter
,Instance Segmentation Model
,CLIP Embedding Model
,Mask Visualization
,Object Detection Model
,Line Counter
,YOLO-World Model
,Model Monitoring Inference Aggregator
,Cache Get
,Polygon Visualization
,Halo Visualization
,VLM as Detector
,Grid Visualization
,Google Vision OCR
,Model Comparison Visualization
,Email Notification
,CogVLM
,Image Threshold
,Keypoint Visualization
,Image Preprocessing
,Roboflow Dataset Upload
,Slack Notification
,Background Color Visualization
,Clip Comparison
,Bounding Box Visualization
,Ellipse Visualization
,Classification Label Visualization
,Label Visualization
,Line Counter Visualization
,LMM
,Stability AI Inpainting
,Reference Path Visualization
,VLM as Detector
,Dynamic Crop
,Triangle Visualization
,Object Detection Model
,Distance Measurement
,Time in Zone
,Detections Stitch
,Florence-2 Model
,SIFT Comparison
,Keypoint Detection Model
,Corner Visualization
,Perspective Correction
,Local File Sink
,Polygon Zone Visualization
,VLM as Classifier
,Twilio SMS Notification
,Trace Visualization
,Webhook Sink
,Size Measurement
,OpenAI
,Roboflow Custom Metadata
,Detections Consensus
,Cache Set
,Crop Visualization
,Instance Segmentation Model
,Buffer
,Roboflow Dataset Upload
,Clip Comparison
,VLM as Classifier
,Anthropic Claude
,Image Blur
,Circle Visualization
,Dot Visualization
,Google Gemini
,Segment Anything 2 Model
,JSON Parser
,Florence-2 Model
,Time in Zone
,Path Deviation
,OpenAI
,Color Visualization
,Pixel Color Count
,Llama 3.2 Vision
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Florence-2 Model
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on.prompt
(string
): Text prompt to the Florence-2 model.classes
(list_of_values
): List of classes to be used.grounding_detection
(Union[instance_segmentation_prediction
,keypoint_detection_prediction
,list_of_values
,object_detection_prediction
]): Detection to ground Florence-2 model. May be statically provided bounding box[left_top_x, left_top_y, right_bottom_x, right_bottom_y]
or result of object-detection model. If the latter is true, one box will be selected based ongrounding_selection_mode
..model_version
(string
): Model to be used.
-
output
raw_output
(Union[string
,language_model_output
]): String value ifstring
or LLM / VLM output iflanguage_model_output
.parsed_output
(dictionary
): Dictionary.classes
(list_of_values
): List of values of any type.
Example JSON definition of step Florence-2 Model
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/florence_2@v1",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"classes": [
"class-a",
"class-b"
],
"grounding_detection": "$steps.detection.predictions",
"grounding_selection_mode": "first",
"model_version": "florence-2-base"
}