Florence-2 Model¶
v2¶
Class: Florence2BlockV2
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.florence2.v2.Florence2BlockV2
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Dedicated inference server required (GPU recommended) - you may want to use dedicated deployment
This Workflow block introduces Florence 2, a Visual Language Model (VLM) capable of performing a wide range of tasks, including:
-
Object Detection
-
Instance Segmentation
-
Image Captioning
-
Optical Character Recognition (OCR)
-
and more...
Below is a comprehensive list of tasks supported by the model, along with descriptions on how to utilize their outputs within the Workflows ecosystem:
Task Descriptions:
-
Custom Prompt (
custom
) - Use free-form prompt to generate a response. Useful with finetuned models. -
Text Recognition (OCR) (
ocr
) - Model recognizes text in the image -
Text Detection & Recognition (OCR) (
ocr-with-text-detection
) - Model detects text regions in the image, and then performs OCR on each detected region -
Captioning (short) (
caption
) - Model provides a short description of the image -
Captioning (
detailed-caption
) - Model provides a long description of the image -
Captioning (long) (
more-detailed-caption
) - Model provides a very long description of the image -
Unprompted Object Detection (
object-detection
) - Model detects and returns the bounding boxes for prominent objects in the image -
Object Detection (
open-vocabulary-object-detection
) - Model detects and returns the bounding boxes for the provided classes -
Detection & Captioning (
object-detection-and-caption
) - Model detects prominent objects and captions them -
Prompted Object Detection (
phrase-grounded-object-detection
) - Based on the textual prompt, model detects objects matching the descriptions -
Prompted Instance Segmentation (
phrase-grounded-instance-segmentation
) - Based on the textual prompt, model segments objects matching the descriptions -
Segment Bounding Box (
detection-grounded-instance-segmentation
) - Model segments the object in the provided bounding box into a polygon -
Classification of Bounding Box (
detection-grounded-classification
) - Model classifies the object inside the provided bounding box -
Captioning of Bounding Box (
detection-grounded-caption
) - Model captions the object in the provided bounding box -
Text Recognition (OCR) for Bounding Box (
detection-grounded-ocr
) - Model performs OCR on the text inside the provided bounding box -
Regions of Interest proposal (
region-proposal
) - Model proposes Regions of Interest (Bounding Boxes) in the image
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/florence_2@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the Florence-2 model. | ✅ |
classes |
List[str] |
List of classes to be used. | ✅ |
grounding_detection |
Optional[List[float], List[int]] |
Detection to ground Florence-2 model. May be statically provided bounding box [left_top_x, left_top_y, right_bottom_x, right_bottom_y] or result of object-detection model. If the latter is true, one box will be selected based on grounding_selection_mode .. |
✅ |
grounding_selection_mode |
str |
. | ❌ |
model_id |
str |
Model to be used. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Florence-2 Model
in version v2
.
- inputs:
Keypoint Visualization
,Google Gemini
,Keypoint Detection Model
,Detections Stabilizer
,Image Contours
,Circle Visualization
,Image Threshold
,Path Deviation
,Absolute Static Crop
,Perspective Correction
,Color Visualization
,Gaze Detection
,Instance Segmentation Model
,Reference Path Visualization
,Stitch Images
,Image Blur
,Florence-2 Model
,Blur Visualization
,Local File Sink
,PTZ Tracking (ONVIF)
.md),Keypoint Detection Model
,Relative Static Crop
,Halo Visualization
,Clip Comparison
,Stability AI Inpainting
,SIFT Comparison
,Detections Merge
,Icon Visualization
,Time in Zone
,Roboflow Custom Metadata
,Dimension Collapse
,Polygon Zone Visualization
,Depth Estimation
,Template Matching
,Instance Segmentation Model
,Stability AI Image Generation
,Dynamic Zone
,Dynamic Crop
,Grid Visualization
,Crop Visualization
,Stitch OCR Detections
,Time in Zone
,Detections Consensus
,Camera Calibration
,Segment Anything 2 Model
,VLM as Classifier
,QR Code Generator
,SIFT
,Bounding Rectangle
,Size Measurement
,Camera Focus
,Model Comparison Visualization
,Twilio SMS Notification
,Detection Offset
,Object Detection Model
,Detections Filter
,Llama 3.2 Vision
,Triangle Visualization
,Line Counter Visualization
,Clip Comparison
,Email Notification
,LMM
,Roboflow Dataset Upload
,Time in Zone
,CSV Formatter
,Image Slicer
,Path Deviation
,Detections Transformation
,Mask Visualization
,Byte Tracker
,Byte Tracker
,Single-Label Classification Model
,OCR Model
,Pixelate Visualization
,Webhook Sink
,Byte Tracker
,Object Detection Model
,Slack Notification
,Velocity
,Dot Visualization
,Image Slicer
,Roboflow Dataset Upload
,Detections Classes Replacement
,YOLO-World Model
,Classification Label Visualization
,OpenAI
,Model Monitoring Inference Aggregator
,VLM as Detector
,Polygon Visualization
,OpenAI
,Buffer
,LMM For Classification
,Stability AI Outpainting
,Trace Visualization
,Line Counter
,Bounding Box Visualization
,Moondream2
,Image Preprocessing
,Multi-Label Classification Model
,Image Convert Grayscale
,Google Vision OCR
,Overlap Filter
,Label Visualization
,CogVLM
,Corner Visualization
,Detections Stitch
,Background Color Visualization
,Florence-2 Model
,VLM as Detector
,Ellipse Visualization
,OpenAI
,Anthropic Claude
- outputs:
Keypoint Visualization
,Google Gemini
,Keypoint Detection Model
,Circle Visualization
,Path Deviation
,Image Threshold
,Perspective Correction
,Color Visualization
,Instance Segmentation Model
,Reference Path Visualization
,Image Blur
,Florence-2 Model
,PTZ Tracking (ONVIF)
.md),Local File Sink
,Keypoint Detection Model
,Halo Visualization
,Clip Comparison
,Stability AI Inpainting
,SIFT Comparison
,Cache Get
,Icon Visualization
,Time in Zone
,Roboflow Custom Metadata
,Polygon Zone Visualization
,Instance Segmentation Model
,Stability AI Image Generation
,Dynamic Crop
,Grid Visualization
,Crop Visualization
,Time in Zone
,Detections Consensus
,VLM as Classifier
,Segment Anything 2 Model
,Perception Encoder Embedding Model
,VLM as Classifier
,Pixel Color Count
,QR Code Generator
,Size Measurement
,Model Comparison Visualization
,Twilio SMS Notification
,CLIP Embedding Model
,Object Detection Model
,Llama 3.2 Vision
,Line Counter Visualization
,Triangle Visualization
,Clip Comparison
,Email Notification
,LMM
,Roboflow Dataset Upload
,Time in Zone
,Path Deviation
,Mask Visualization
,JSON Parser
,Webhook Sink
,Object Detection Model
,Slack Notification
,Cache Set
,Dot Visualization
,Roboflow Dataset Upload
,Detections Classes Replacement
,YOLO-World Model
,Classification Label Visualization
,OpenAI
,Model Monitoring Inference Aggregator
,VLM as Detector
,Polygon Visualization
,OpenAI
,Buffer
,LMM For Classification
,Trace Visualization
,Stability AI Outpainting
,Line Counter
,Bounding Box Visualization
,Distance Measurement
,Moondream2
,Image Preprocessing
,Google Vision OCR
,Label Visualization
,Line Counter
,CogVLM
,Corner Visualization
,Detections Stitch
,Background Color Visualization
,Florence-2 Model
,VLM as Detector
,Ellipse Visualization
,OpenAI
,Anthropic Claude
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Florence-2 Model
in version v2
has.
Bindings
-
input
images
(image
): The image to infer on..prompt
(string
): Text prompt to the Florence-2 model.classes
(list_of_values
): List of classes to be used.grounding_detection
(Union[instance_segmentation_prediction
,object_detection_prediction
,list_of_values
,keypoint_detection_prediction
]): Detection to ground Florence-2 model. May be statically provided bounding box[left_top_x, left_top_y, right_bottom_x, right_bottom_y]
or result of object-detection model. If the latter is true, one box will be selected based ongrounding_selection_mode
..model_id
(roboflow_model_id
): Model to be used.
-
output
raw_output
(Union[string
,language_model_output
]): String value ifstring
or LLM / VLM output iflanguage_model_output
.parsed_output
(dictionary
): Dictionary.classes
(list_of_values
): List of values of any type.
Example JSON definition of step Florence-2 Model
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/florence_2@v2",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"classes": [
"class-a",
"class-b"
],
"grounding_detection": "$steps.detection.predictions",
"grounding_selection_mode": "first",
"model_id": "florence-2-base"
}
v1¶
Class: Florence2BlockV1
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.florence2.v1.Florence2BlockV1
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Dedicated inference server required (GPU recommended) - you may want to use dedicated deployment
This Workflow block introduces Florence 2, a Visual Language Model (VLM) capable of performing a wide range of tasks, including:
-
Object Detection
-
Instance Segmentation
-
Image Captioning
-
Optical Character Recognition (OCR)
-
and more...
Below is a comprehensive list of tasks supported by the model, along with descriptions on how to utilize their outputs within the Workflows ecosystem:
Task Descriptions:
-
Custom Prompt (
custom
) - Use free-form prompt to generate a response. Useful with finetuned models. -
Text Recognition (OCR) (
ocr
) - Model recognizes text in the image -
Text Detection & Recognition (OCR) (
ocr-with-text-detection
) - Model detects text regions in the image, and then performs OCR on each detected region -
Captioning (short) (
caption
) - Model provides a short description of the image -
Captioning (
detailed-caption
) - Model provides a long description of the image -
Captioning (long) (
more-detailed-caption
) - Model provides a very long description of the image -
Unprompted Object Detection (
object-detection
) - Model detects and returns the bounding boxes for prominent objects in the image -
Object Detection (
open-vocabulary-object-detection
) - Model detects and returns the bounding boxes for the provided classes -
Detection & Captioning (
object-detection-and-caption
) - Model detects prominent objects and captions them -
Prompted Object Detection (
phrase-grounded-object-detection
) - Based on the textual prompt, model detects objects matching the descriptions -
Prompted Instance Segmentation (
phrase-grounded-instance-segmentation
) - Based on the textual prompt, model segments objects matching the descriptions -
Segment Bounding Box (
detection-grounded-instance-segmentation
) - Model segments the object in the provided bounding box into a polygon -
Classification of Bounding Box (
detection-grounded-classification
) - Model classifies the object inside the provided bounding box -
Captioning of Bounding Box (
detection-grounded-caption
) - Model captions the object in the provided bounding box -
Text Recognition (OCR) for Bounding Box (
detection-grounded-ocr
) - Model performs OCR on the text inside the provided bounding box -
Regions of Interest proposal (
region-proposal
) - Model proposes Regions of Interest (Bounding Boxes) in the image
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/florence_2@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the Florence-2 model. | ✅ |
classes |
List[str] |
List of classes to be used. | ✅ |
grounding_detection |
Optional[List[float], List[int]] |
Detection to ground Florence-2 model. May be statically provided bounding box [left_top_x, left_top_y, right_bottom_x, right_bottom_y] or result of object-detection model. If the latter is true, one box will be selected based on grounding_selection_mode .. |
✅ |
grounding_selection_mode |
str |
. | ❌ |
model_version |
str |
Model to be used. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Florence-2 Model
in version v1
.
- inputs:
Keypoint Visualization
,Google Gemini
,Keypoint Detection Model
,Detections Stabilizer
,Image Contours
,Circle Visualization
,Image Threshold
,Path Deviation
,Absolute Static Crop
,Perspective Correction
,Color Visualization
,Gaze Detection
,Instance Segmentation Model
,Reference Path Visualization
,Stitch Images
,Image Blur
,Florence-2 Model
,Blur Visualization
,Local File Sink
,PTZ Tracking (ONVIF)
.md),Keypoint Detection Model
,Relative Static Crop
,Halo Visualization
,Clip Comparison
,Stability AI Inpainting
,SIFT Comparison
,Detections Merge
,Icon Visualization
,Time in Zone
,Roboflow Custom Metadata
,Dimension Collapse
,Polygon Zone Visualization
,Depth Estimation
,Template Matching
,Instance Segmentation Model
,Stability AI Image Generation
,Dynamic Zone
,Dynamic Crop
,Grid Visualization
,Crop Visualization
,Stitch OCR Detections
,Time in Zone
,Detections Consensus
,Camera Calibration
,Segment Anything 2 Model
,VLM as Classifier
,QR Code Generator
,SIFT
,Bounding Rectangle
,Size Measurement
,Camera Focus
,Model Comparison Visualization
,Twilio SMS Notification
,Detection Offset
,Object Detection Model
,Detections Filter
,Llama 3.2 Vision
,Triangle Visualization
,Line Counter Visualization
,Clip Comparison
,Email Notification
,LMM
,Roboflow Dataset Upload
,Time in Zone
,CSV Formatter
,Image Slicer
,Path Deviation
,Detections Transformation
,Mask Visualization
,Byte Tracker
,Byte Tracker
,Single-Label Classification Model
,OCR Model
,Pixelate Visualization
,Webhook Sink
,Byte Tracker
,Object Detection Model
,Slack Notification
,Velocity
,Dot Visualization
,Image Slicer
,Roboflow Dataset Upload
,Detections Classes Replacement
,YOLO-World Model
,Classification Label Visualization
,OpenAI
,Model Monitoring Inference Aggregator
,VLM as Detector
,Polygon Visualization
,OpenAI
,Buffer
,LMM For Classification
,Stability AI Outpainting
,Trace Visualization
,Line Counter
,Bounding Box Visualization
,Moondream2
,Image Preprocessing
,Multi-Label Classification Model
,Image Convert Grayscale
,Google Vision OCR
,Overlap Filter
,Label Visualization
,CogVLM
,Corner Visualization
,Detections Stitch
,Background Color Visualization
,Florence-2 Model
,VLM as Detector
,Ellipse Visualization
,OpenAI
,Anthropic Claude
- outputs:
Keypoint Visualization
,Google Gemini
,Keypoint Detection Model
,Circle Visualization
,Path Deviation
,Image Threshold
,Perspective Correction
,Color Visualization
,Instance Segmentation Model
,Reference Path Visualization
,Image Blur
,Florence-2 Model
,PTZ Tracking (ONVIF)
.md),Local File Sink
,Keypoint Detection Model
,Halo Visualization
,Clip Comparison
,Stability AI Inpainting
,SIFT Comparison
,Cache Get
,Icon Visualization
,Time in Zone
,Roboflow Custom Metadata
,Polygon Zone Visualization
,Instance Segmentation Model
,Stability AI Image Generation
,Dynamic Crop
,Grid Visualization
,Crop Visualization
,Time in Zone
,Detections Consensus
,VLM as Classifier
,Segment Anything 2 Model
,Perception Encoder Embedding Model
,VLM as Classifier
,Pixel Color Count
,QR Code Generator
,Size Measurement
,Model Comparison Visualization
,Twilio SMS Notification
,CLIP Embedding Model
,Object Detection Model
,Llama 3.2 Vision
,Line Counter Visualization
,Triangle Visualization
,Clip Comparison
,Email Notification
,LMM
,Roboflow Dataset Upload
,Time in Zone
,Path Deviation
,Mask Visualization
,JSON Parser
,Webhook Sink
,Object Detection Model
,Slack Notification
,Cache Set
,Dot Visualization
,Roboflow Dataset Upload
,Detections Classes Replacement
,YOLO-World Model
,Classification Label Visualization
,OpenAI
,Model Monitoring Inference Aggregator
,VLM as Detector
,Polygon Visualization
,OpenAI
,Buffer
,LMM For Classification
,Trace Visualization
,Stability AI Outpainting
,Line Counter
,Bounding Box Visualization
,Distance Measurement
,Moondream2
,Image Preprocessing
,Google Vision OCR
,Label Visualization
,Line Counter
,CogVLM
,Corner Visualization
,Detections Stitch
,Background Color Visualization
,Florence-2 Model
,VLM as Detector
,Ellipse Visualization
,OpenAI
,Anthropic Claude
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Florence-2 Model
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..prompt
(string
): Text prompt to the Florence-2 model.classes
(list_of_values
): List of classes to be used.grounding_detection
(Union[instance_segmentation_prediction
,object_detection_prediction
,list_of_values
,keypoint_detection_prediction
]): Detection to ground Florence-2 model. May be statically provided bounding box[left_top_x, left_top_y, right_bottom_x, right_bottom_y]
or result of object-detection model. If the latter is true, one box will be selected based ongrounding_selection_mode
..model_version
(string
): Model to be used.
-
output
raw_output
(Union[string
,language_model_output
]): String value ifstring
or LLM / VLM output iflanguage_model_output
.parsed_output
(dictionary
): Dictionary.classes
(list_of_values
): List of values of any type.
Example JSON definition of step Florence-2 Model
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/florence_2@v1",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"classes": [
"class-a",
"class-b"
],
"grounding_detection": "$steps.detection.predictions",
"grounding_selection_mode": "first",
"model_version": "florence-2-base"
}