Google Gemini¶
v2¶
Class: GoogleGeminiBlockV2 (there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.google_gemini.v2.GoogleGeminiBlockV2
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Ask a question to Google's Gemini model with vision capabilities.
You can specify arbitrary text prompts or predefined ones, the block supports the following types of prompt:
-
Open Prompt (
unconstrained) - Use any prompt to generate a raw response -
Text Recognition (OCR) (
ocr) - Model recognizes text in the image -
Visual Question Answering (
visual-question-answering) - Model answers the question you submit in the prompt -
Captioning (short) (
caption) - Model provides a short description of the image -
Captioning (
detailed-caption) - Model provides a long description of the image -
Single-Label Classification (
classification) - Model classifies the image content as one of the provided classes -
Multi-Label Classification (
multi-label-classification) - Model classifies the image content as one or more of the provided classes -
Unprompted Object Detection (
object-detection) - Model detects and returns the bounding boxes for prominent objects in the image -
Structured Output Generation (
structured-answering) - Model returns a JSON response with the specified fields
You need to provide your Google AI API key to use the Gemini model.
WARNING!
This block makes use of /v1beta API of Google Gemini model - the implementation may change
in the future, without guarantee of backward compatibility.
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/google_gemini@v2to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the Gemini model. | ✅ |
output_structure |
Dict[str, str] |
Dictionary with structure of expected JSON response. | ❌ |
classes |
List[str] |
List of classes to be used. | ✅ |
api_key |
str |
Your Google AI API key. | ✅ |
model_version |
str |
Model to be used. | ✅ |
thinking_level |
str |
Controls the depth of internal reasoning for Gemini 3+ models. 'low' minimizes latency and cost (best for simple tasks), 'high' maximizes reasoning depth (default). Only supported by Gemini 3 and newer models.. | ✅ |
temperature |
float |
Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are.. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response. If not specified, the model will use its default limit.. | ❌ |
max_concurrent_requests |
int |
Number of concurrent requests that can be executed by block when batch of input images provided. If not given - block defaults to value configured globally in Workflows Execution Engine. Please restrict if you hit Google Gemini API limits.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Google Gemini in version v2.
- inputs:
VLM as Detector,Google Vision OCR,Classification Label Visualization,Circle Visualization,Image Contours,Relative Static Crop,Image Preprocessing,LMM For Classification,VLM as Classifier,Ellipse Visualization,Stitch Images,Triangle Visualization,Stability AI Inpainting,QR Code Generator,Image Slicer,Background Color Visualization,Model Monitoring Inference Aggregator,OCR Model,Dot Visualization,Florence-2 Model,SIFT,Morphological Transformation,EasyOCR,Reference Path Visualization,Halo Visualization,SIFT Comparison,Gaze Detection,Buffer,Polygon Visualization,Image Slicer,Florence-2 Model,Slack Notification,Clip Comparison,Image Convert Grayscale,Instance Segmentation Model,OpenAI,Color Visualization,Keypoint Detection Model,Google Gemini,Label Visualization,Email Notification,Llama 3.2 Vision,Trace Visualization,Dynamic Zone,Size Measurement,Email Notification,Corner Visualization,Mask Visualization,CogVLM,Stability AI Outpainting,OpenAI,Roboflow Custom Metadata,Stitch OCR Detections,Blur Visualization,CSV Formatter,Crop Visualization,OpenAI,Grid Visualization,Perspective Correction,Twilio SMS Notification,Absolute Static Crop,Single-Label Classification Model,Clip Comparison,Contrast Equalization,Roboflow Dataset Upload,Roboflow Dataset Upload,Polygon Zone Visualization,Stability AI Image Generation,Webhook Sink,Depth Estimation,Dimension Collapse,Bounding Box Visualization,Camera Focus,Line Counter Visualization,Multi-Label Classification Model,Icon Visualization,Image Blur,Pixelate Visualization,Image Threshold,Anthropic Claude,LMM,Google Gemini,Cosine Similarity,Dynamic Crop,Model Comparison Visualization,Camera Calibration,Local File Sink,Keypoint Visualization,Identify Changes,Object Detection Model - outputs:
VLM as Detector,Google Vision OCR,SAM 3,Classification Label Visualization,Circle Visualization,Image Preprocessing,LMM For Classification,VLM as Classifier,Ellipse Visualization,Triangle Visualization,Stability AI Inpainting,QR Code Generator,VLM as Classifier,Background Color Visualization,Model Monitoring Inference Aggregator,Segment Anything 2 Model,Moondream2,Distance Measurement,Dot Visualization,Florence-2 Model,Morphological Transformation,Reference Path Visualization,Halo Visualization,SIFT Comparison,Buffer,Polygon Visualization,Florence-2 Model,Slack Notification,Clip Comparison,Perception Encoder Embedding Model,Instance Segmentation Model,OpenAI,Color Visualization,Line Counter,PTZ Tracking (ONVIF).md),Keypoint Detection Model,Object Detection Model,Google Gemini,JSON Parser,Label Visualization,Email Notification,Llama 3.2 Vision,Trace Visualization,Line Counter,YOLO-World Model,Size Measurement,Email Notification,Corner Visualization,Mask Visualization,Time in Zone,OpenAI,Roboflow Custom Metadata,Stability AI Outpainting,CogVLM,Stitch OCR Detections,Detections Stitch,Cache Set,Time in Zone,Crop Visualization,VLM as Detector,OpenAI,Grid Visualization,Detections Classes Replacement,Perspective Correction,Twilio SMS Notification,Clip Comparison,Seg Preview,Contrast Equalization,Roboflow Dataset Upload,Roboflow Dataset Upload,Polygon Zone Visualization,CLIP Embedding Model,Stability AI Image Generation,Webhook Sink,Bounding Box Visualization,Line Counter Visualization,Instance Segmentation Model,Icon Visualization,Image Blur,Time in Zone,Image Threshold,Path Deviation,Keypoint Detection Model,Anthropic Claude,LMM,Google Gemini,Pixel Color Count,Dynamic Crop,Path Deviation,Detections Consensus,Model Comparison Visualization,Cache Get,Local File Sink,Keypoint Visualization,Object Detection Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Google Gemini in version v2 has.
Bindings
-
input
images(image): The image to infer on..prompt(string): Text prompt to the Gemini model.classes(list_of_values): List of classes to be used.api_key(Union[string,secret]): Your Google AI API key.model_version(string): Model to be used.thinking_level(string): Controls the depth of internal reasoning for Gemini 3+ models. 'low' minimizes latency and cost (best for simple tasks), 'high' maximizes reasoning depth (default). Only supported by Gemini 3 and newer models..temperature(float): Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are..
-
output
output(Union[string,language_model_output]): String value ifstringor LLM / VLM output iflanguage_model_output.classes(list_of_values): List of values of any type.
Example JSON definition of step Google Gemini in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/google_gemini@v2",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"output_structure": {
"my_key": "description"
},
"classes": [
"class-a",
"class-b"
],
"api_key": "xxx-xxx",
"model_version": "gemini-3-pro-preview",
"thinking_level": "<block_does_not_provide_example>",
"temperature": "<block_does_not_provide_example>",
"max_tokens": "<block_does_not_provide_example>",
"max_concurrent_requests": "<block_does_not_provide_example>"
}
v1¶
Class: GoogleGeminiBlockV1 (there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.google_gemini.v1.GoogleGeminiBlockV1
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Ask a question to Google's Gemini model with vision capabilities.
You can specify arbitrary text prompts or predefined ones, the block supports the following types of prompt:
-
Open Prompt (
unconstrained) - Use any prompt to generate a raw response -
Text Recognition (OCR) (
ocr) - Model recognizes text in the image -
Visual Question Answering (
visual-question-answering) - Model answers the question you submit in the prompt -
Captioning (short) (
caption) - Model provides a short description of the image -
Captioning (
detailed-caption) - Model provides a long description of the image -
Single-Label Classification (
classification) - Model classifies the image content as one of the provided classes -
Multi-Label Classification (
multi-label-classification) - Model classifies the image content as one or more of the provided classes -
Unprompted Object Detection (
object-detection) - Model detects and returns the bounding boxes for prominent objects in the image -
Structured Output Generation (
structured-answering) - Model returns a JSON response with the specified fields
You need to provide your Google AI API key to use the Gemini model.
WARNING!
This block makes use of /v1beta API of Google Gemini model - the implementation may change
in the future, without guarantee of backward compatibility.
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/google_gemini@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the Gemini model. | ✅ |
output_structure |
Dict[str, str] |
Dictionary with structure of expected JSON response. | ❌ |
classes |
List[str] |
List of classes to be used. | ✅ |
api_key |
str |
Your Google AI API key. | ✅ |
model_version |
str |
Model to be used. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response.. | ❌ |
temperature |
float |
Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are.. | ✅ |
max_concurrent_requests |
int |
Number of concurrent requests that can be executed by block when batch of input images provided. If not given - block defaults to value configured globally in Workflows Execution Engine. Please restrict if you hit Google Gemini API limits.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Google Gemini in version v1.
- inputs:
VLM as Detector,Google Vision OCR,Classification Label Visualization,Circle Visualization,Image Contours,Relative Static Crop,Image Preprocessing,LMM For Classification,VLM as Classifier,Ellipse Visualization,Stitch Images,Triangle Visualization,Stability AI Inpainting,QR Code Generator,Image Slicer,Background Color Visualization,Model Monitoring Inference Aggregator,OCR Model,Dot Visualization,Florence-2 Model,SIFT,Morphological Transformation,EasyOCR,Reference Path Visualization,Halo Visualization,SIFT Comparison,Gaze Detection,Buffer,Polygon Visualization,Image Slicer,Florence-2 Model,Slack Notification,Clip Comparison,Image Convert Grayscale,Instance Segmentation Model,OpenAI,Color Visualization,Keypoint Detection Model,Google Gemini,Label Visualization,Email Notification,Llama 3.2 Vision,Trace Visualization,Dynamic Zone,Size Measurement,Email Notification,Corner Visualization,Mask Visualization,CogVLM,Stability AI Outpainting,OpenAI,Roboflow Custom Metadata,Stitch OCR Detections,Blur Visualization,CSV Formatter,Crop Visualization,OpenAI,Grid Visualization,Perspective Correction,Twilio SMS Notification,Absolute Static Crop,Single-Label Classification Model,Clip Comparison,Contrast Equalization,Roboflow Dataset Upload,Roboflow Dataset Upload,Polygon Zone Visualization,Stability AI Image Generation,Webhook Sink,Depth Estimation,Dimension Collapse,Bounding Box Visualization,Camera Focus,Line Counter Visualization,Multi-Label Classification Model,Icon Visualization,Image Blur,Pixelate Visualization,Image Threshold,Anthropic Claude,LMM,Google Gemini,Cosine Similarity,Dynamic Crop,Model Comparison Visualization,Camera Calibration,Local File Sink,Keypoint Visualization,Identify Changes,Object Detection Model - outputs:
VLM as Detector,Google Vision OCR,SAM 3,Classification Label Visualization,Circle Visualization,Image Preprocessing,LMM For Classification,VLM as Classifier,Ellipse Visualization,Triangle Visualization,Stability AI Inpainting,QR Code Generator,VLM as Classifier,Background Color Visualization,Model Monitoring Inference Aggregator,Segment Anything 2 Model,Moondream2,Distance Measurement,Dot Visualization,Florence-2 Model,Morphological Transformation,Reference Path Visualization,Halo Visualization,SIFT Comparison,Buffer,Polygon Visualization,Florence-2 Model,Slack Notification,Clip Comparison,Perception Encoder Embedding Model,Instance Segmentation Model,OpenAI,Color Visualization,Line Counter,PTZ Tracking (ONVIF).md),Keypoint Detection Model,Object Detection Model,Google Gemini,JSON Parser,Label Visualization,Email Notification,Llama 3.2 Vision,Trace Visualization,Line Counter,YOLO-World Model,Size Measurement,Email Notification,Corner Visualization,Mask Visualization,Time in Zone,OpenAI,Roboflow Custom Metadata,Stability AI Outpainting,CogVLM,Stitch OCR Detections,Detections Stitch,Cache Set,Time in Zone,Crop Visualization,VLM as Detector,OpenAI,Grid Visualization,Detections Classes Replacement,Perspective Correction,Twilio SMS Notification,Clip Comparison,Seg Preview,Contrast Equalization,Roboflow Dataset Upload,Roboflow Dataset Upload,Polygon Zone Visualization,CLIP Embedding Model,Stability AI Image Generation,Webhook Sink,Bounding Box Visualization,Line Counter Visualization,Instance Segmentation Model,Icon Visualization,Image Blur,Time in Zone,Image Threshold,Path Deviation,Keypoint Detection Model,Anthropic Claude,LMM,Google Gemini,Pixel Color Count,Dynamic Crop,Path Deviation,Detections Consensus,Model Comparison Visualization,Cache Get,Local File Sink,Keypoint Visualization,Object Detection Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Google Gemini in version v1 has.
Bindings
-
input
images(image): The image to infer on..prompt(string): Text prompt to the Gemini model.classes(list_of_values): List of classes to be used.api_key(Union[string,secret]): Your Google AI API key.model_version(string): Model to be used.temperature(float): Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are..
-
output
output(Union[string,language_model_output]): String value ifstringor LLM / VLM output iflanguage_model_output.classes(list_of_values): List of values of any type.
Example JSON definition of step Google Gemini in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/google_gemini@v1",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"output_structure": {
"my_key": "description"
},
"classes": [
"class-a",
"class-b"
],
"api_key": "xxx-xxx",
"model_version": "gemini-2.5-pro",
"max_tokens": "<block_does_not_provide_example>",
"temperature": "<block_does_not_provide_example>",
"max_concurrent_requests": "<block_does_not_provide_example>"
}