Google Gemini¶
v2¶
Class: GoogleGeminiBlockV2 (there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.google_gemini.v2.GoogleGeminiBlockV2
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Ask a question to Google's Gemini model with vision capabilities.
You can specify arbitrary text prompts or predefined ones, the block supports the following types of prompt:
-
Open Prompt (
unconstrained) - Use any prompt to generate a raw response -
Text Recognition (OCR) (
ocr) - Model recognizes text in the image -
Visual Question Answering (
visual-question-answering) - Model answers the question you submit in the prompt -
Captioning (short) (
caption) - Model provides a short description of the image -
Captioning (
detailed-caption) - Model provides a long description of the image -
Single-Label Classification (
classification) - Model classifies the image content as one of the provided classes -
Multi-Label Classification (
multi-label-classification) - Model classifies the image content as one or more of the provided classes -
Unprompted Object Detection (
object-detection) - Model detects and returns the bounding boxes for prominent objects in the image -
Structured Output Generation (
structured-answering) - Model returns a JSON response with the specified fields
You need to provide your Google AI API key to use the Gemini model.
WARNING!
This block makes use of /v1beta API of Google Gemini model - the implementation may change
in the future, without guarantee of backward compatibility.
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/google_gemini@v2to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the Gemini model. | ✅ |
output_structure |
Dict[str, str] |
Dictionary with structure of expected JSON response. | ❌ |
classes |
List[str] |
List of classes to be used. | ✅ |
api_key |
str |
Your Google AI API key. | ✅ |
model_version |
str |
Model to be used. | ✅ |
thinking_level |
str |
Controls the depth of internal reasoning for Gemini 3+ models. 'low' minimizes latency and cost (best for simple tasks), 'high' maximizes reasoning depth (default). Only supported by Gemini 3 and newer models.. | ✅ |
temperature |
float |
Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are.. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response. If not specified, the model will use its default limit.. | ❌ |
max_concurrent_requests |
int |
Number of concurrent requests that can be executed by block when batch of input images provided. If not given - block defaults to value configured globally in Workflows Execution Engine. Please restrict if you hit Google Gemini API limits.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Google Gemini in version v2.
- inputs:
Blur Visualization,Line Counter Visualization,LMM,Instance Segmentation Model,Cosine Similarity,Dynamic Crop,Multi-Label Classification Model,Circle Visualization,Camera Calibration,Absolute Static Crop,Webhook Sink,Mask Visualization,Google Gemini,Ellipse Visualization,Single-Label Classification Model,Anthropic Claude,Email Notification,Color Visualization,Keypoint Detection Model,Image Preprocessing,EasyOCR,OCR Model,Llama 3.2 Vision,OpenAI,OpenAI,Roboflow Custom Metadata,Twilio SMS Notification,Florence-2 Model,Trace Visualization,Depth Estimation,Perspective Correction,Dynamic Zone,Grid Visualization,Stability AI Outpainting,Contrast Equalization,Google Gemini,CSV Formatter,QR Code Generator,Polygon Zone Visualization,Reference Path Visualization,Stability AI Inpainting,Roboflow Dataset Upload,Stitch OCR Detections,Bounding Box Visualization,Image Slicer,Corner Visualization,Polygon Visualization,Local File Sink,CogVLM,Slack Notification,Relative Static Crop,Triangle Visualization,Pixelate Visualization,Model Monitoring Inference Aggregator,Dimension Collapse,Icon Visualization,Background Color Visualization,Classification Label Visualization,Keypoint Visualization,Camera Focus,Background Subtraction,Size Measurement,Dot Visualization,Object Detection Model,Email Notification,Crop Visualization,Stitch Images,Florence-2 Model,LMM For Classification,VLM as Detector,Image Contours,OpenAI,Roboflow Dataset Upload,Halo Visualization,Model Comparison Visualization,SIFT Comparison,Motion Detection,Clip Comparison,Clip Comparison,Morphological Transformation,Google Vision OCR,VLM as Classifier,Buffer,Stability AI Image Generation,Image Blur,Image Threshold,Identify Changes,Image Slicer,OpenAI,Anthropic Claude,Label Visualization,Image Convert Grayscale,SIFT,Gaze Detection - outputs:
JSON Parser,Line Counter,Instance Segmentation Model,Dynamic Crop,Anthropic Claude,Image Preprocessing,Detections Classes Replacement,OpenAI,Line Counter,Twilio SMS Notification,Florence-2 Model,VLM as Detector,Contrast Equalization,Polygon Zone Visualization,Reference Path Visualization,Roboflow Dataset Upload,Stitch OCR Detections,Polygon Visualization,CogVLM,Path Deviation,Background Color Visualization,Keypoint Visualization,Size Measurement,Dot Visualization,Pixel Color Count,Object Detection Model,Time in Zone,Object Detection Model,Florence-2 Model,LMM For Classification,Keypoint Detection Model,Roboflow Dataset Upload,YOLO-World Model,Halo Visualization,Model Comparison Visualization,CLIP Embedding Model,SIFT Comparison,Distance Measurement,Path Deviation,Motion Detection,VLM as Classifier,Clip Comparison,Seg Preview,VLM as Classifier,Segment Anything 2 Model,Image Blur,Cache Get,Anthropic Claude,Moondream2,Line Counter Visualization,Detections Stitch,LMM,Instance Segmentation Model,Time in Zone,Circle Visualization,Webhook Sink,Mask Visualization,Google Gemini,Ellipse Visualization,Email Notification,Color Visualization,Keypoint Detection Model,Detections Consensus,Llama 3.2 Vision,SAM 3,OpenAI,SAM 3,Roboflow Custom Metadata,Trace Visualization,Perspective Correction,Perception Encoder Embedding Model,Stability AI Outpainting,Google Gemini,Grid Visualization,QR Code Generator,PTZ Tracking (ONVIF).md),Stability AI Inpainting,Bounding Box Visualization,Corner Visualization,Local File Sink,Slack Notification,Triangle Visualization,Model Monitoring Inference Aggregator,Icon Visualization,Time in Zone,Classification Label Visualization,Email Notification,Crop Visualization,VLM as Detector,OpenAI,SAM 3,Clip Comparison,Cache Set,Morphological Transformation,Google Vision OCR,Buffer,Stability AI Image Generation,Image Threshold,OpenAI,Label Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Google Gemini in version v2 has.
Bindings
-
input
images(image): The image to infer on..prompt(string): Text prompt to the Gemini model.classes(list_of_values): List of classes to be used.api_key(Union[secret,string]): Your Google AI API key.model_version(string): Model to be used.thinking_level(string): Controls the depth of internal reasoning for Gemini 3+ models. 'low' minimizes latency and cost (best for simple tasks), 'high' maximizes reasoning depth (default). Only supported by Gemini 3 and newer models..temperature(float): Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are..
-
output
output(Union[string,language_model_output]): String value ifstringor LLM / VLM output iflanguage_model_output.classes(list_of_values): List of values of any type.
Example JSON definition of step Google Gemini in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/google_gemini@v2",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"output_structure": {
"my_key": "description"
},
"classes": [
"class-a",
"class-b"
],
"api_key": "xxx-xxx",
"model_version": "gemini-3-pro-preview",
"thinking_level": "<block_does_not_provide_example>",
"temperature": "<block_does_not_provide_example>",
"max_tokens": "<block_does_not_provide_example>",
"max_concurrent_requests": "<block_does_not_provide_example>"
}
v1¶
Class: GoogleGeminiBlockV1 (there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.google_gemini.v1.GoogleGeminiBlockV1
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Ask a question to Google's Gemini model with vision capabilities.
You can specify arbitrary text prompts or predefined ones, the block supports the following types of prompt:
-
Open Prompt (
unconstrained) - Use any prompt to generate a raw response -
Text Recognition (OCR) (
ocr) - Model recognizes text in the image -
Visual Question Answering (
visual-question-answering) - Model answers the question you submit in the prompt -
Captioning (short) (
caption) - Model provides a short description of the image -
Captioning (
detailed-caption) - Model provides a long description of the image -
Single-Label Classification (
classification) - Model classifies the image content as one of the provided classes -
Multi-Label Classification (
multi-label-classification) - Model classifies the image content as one or more of the provided classes -
Unprompted Object Detection (
object-detection) - Model detects and returns the bounding boxes for prominent objects in the image -
Structured Output Generation (
structured-answering) - Model returns a JSON response with the specified fields
You need to provide your Google AI API key to use the Gemini model.
WARNING!
This block makes use of /v1beta API of Google Gemini model - the implementation may change
in the future, without guarantee of backward compatibility.
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/google_gemini@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the Gemini model. | ✅ |
output_structure |
Dict[str, str] |
Dictionary with structure of expected JSON response. | ❌ |
classes |
List[str] |
List of classes to be used. | ✅ |
api_key |
str |
Your Google AI API key. | ✅ |
model_version |
str |
Model to be used. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response.. | ❌ |
temperature |
float |
Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are.. | ✅ |
max_concurrent_requests |
int |
Number of concurrent requests that can be executed by block when batch of input images provided. If not given - block defaults to value configured globally in Workflows Execution Engine. Please restrict if you hit Google Gemini API limits.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Google Gemini in version v1.
- inputs:
Blur Visualization,Line Counter Visualization,LMM,Instance Segmentation Model,Cosine Similarity,Dynamic Crop,Multi-Label Classification Model,Circle Visualization,Camera Calibration,Absolute Static Crop,Webhook Sink,Mask Visualization,Google Gemini,Ellipse Visualization,Single-Label Classification Model,Anthropic Claude,Email Notification,Color Visualization,Keypoint Detection Model,Image Preprocessing,EasyOCR,OCR Model,Llama 3.2 Vision,OpenAI,OpenAI,Roboflow Custom Metadata,Twilio SMS Notification,Florence-2 Model,Trace Visualization,Depth Estimation,Perspective Correction,Dynamic Zone,Grid Visualization,Stability AI Outpainting,Contrast Equalization,Google Gemini,CSV Formatter,QR Code Generator,Polygon Zone Visualization,Reference Path Visualization,Stability AI Inpainting,Roboflow Dataset Upload,Stitch OCR Detections,Bounding Box Visualization,Image Slicer,Corner Visualization,Polygon Visualization,Local File Sink,CogVLM,Slack Notification,Relative Static Crop,Triangle Visualization,Pixelate Visualization,Model Monitoring Inference Aggregator,Dimension Collapse,Icon Visualization,Background Color Visualization,Classification Label Visualization,Keypoint Visualization,Camera Focus,Background Subtraction,Size Measurement,Dot Visualization,Object Detection Model,Email Notification,Crop Visualization,Stitch Images,Florence-2 Model,LMM For Classification,VLM as Detector,Image Contours,OpenAI,Roboflow Dataset Upload,Halo Visualization,Model Comparison Visualization,SIFT Comparison,Motion Detection,Clip Comparison,Clip Comparison,Morphological Transformation,Google Vision OCR,VLM as Classifier,Buffer,Stability AI Image Generation,Image Blur,Image Threshold,Identify Changes,Image Slicer,OpenAI,Anthropic Claude,Label Visualization,Image Convert Grayscale,SIFT,Gaze Detection - outputs:
JSON Parser,Line Counter,Instance Segmentation Model,Dynamic Crop,Anthropic Claude,Image Preprocessing,Detections Classes Replacement,OpenAI,Line Counter,Twilio SMS Notification,Florence-2 Model,VLM as Detector,Contrast Equalization,Polygon Zone Visualization,Reference Path Visualization,Roboflow Dataset Upload,Stitch OCR Detections,Polygon Visualization,CogVLM,Path Deviation,Background Color Visualization,Keypoint Visualization,Size Measurement,Dot Visualization,Pixel Color Count,Object Detection Model,Time in Zone,Object Detection Model,Florence-2 Model,LMM For Classification,Keypoint Detection Model,Roboflow Dataset Upload,YOLO-World Model,Halo Visualization,Model Comparison Visualization,CLIP Embedding Model,SIFT Comparison,Distance Measurement,Path Deviation,Motion Detection,VLM as Classifier,Clip Comparison,Seg Preview,VLM as Classifier,Segment Anything 2 Model,Image Blur,Cache Get,Anthropic Claude,Moondream2,Line Counter Visualization,Detections Stitch,LMM,Instance Segmentation Model,Time in Zone,Circle Visualization,Webhook Sink,Mask Visualization,Google Gemini,Ellipse Visualization,Email Notification,Color Visualization,Keypoint Detection Model,Detections Consensus,Llama 3.2 Vision,SAM 3,OpenAI,SAM 3,Roboflow Custom Metadata,Trace Visualization,Perspective Correction,Perception Encoder Embedding Model,Stability AI Outpainting,Google Gemini,Grid Visualization,QR Code Generator,PTZ Tracking (ONVIF).md),Stability AI Inpainting,Bounding Box Visualization,Corner Visualization,Local File Sink,Slack Notification,Triangle Visualization,Model Monitoring Inference Aggregator,Icon Visualization,Time in Zone,Classification Label Visualization,Email Notification,Crop Visualization,VLM as Detector,OpenAI,SAM 3,Clip Comparison,Cache Set,Morphological Transformation,Google Vision OCR,Buffer,Stability AI Image Generation,Image Threshold,OpenAI,Label Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Google Gemini in version v1 has.
Bindings
-
input
images(image): The image to infer on..prompt(string): Text prompt to the Gemini model.classes(list_of_values): List of classes to be used.api_key(Union[secret,string]): Your Google AI API key.model_version(string): Model to be used.temperature(float): Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are..
-
output
output(Union[string,language_model_output]): String value ifstringor LLM / VLM output iflanguage_model_output.classes(list_of_values): List of values of any type.
Example JSON definition of step Google Gemini in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/google_gemini@v1",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"output_structure": {
"my_key": "description"
},
"classes": [
"class-a",
"class-b"
],
"api_key": "xxx-xxx",
"model_version": "gemini-2.5-pro",
"max_tokens": "<block_does_not_provide_example>",
"temperature": "<block_does_not_provide_example>",
"max_concurrent_requests": "<block_does_not_provide_example>"
}