Google Gemini¶
Class: GoogleGeminiBlockV1
Source: inference.core.workflows.core_steps.models.foundation.google_gemini.v1.GoogleGeminiBlockV1
Ask a question to Google's Gemini model with vision capabilities.
You can specify arbitrary text prompts or predefined ones, the block supports the following types of prompt:
-
Open Prompt (
unconstrained
) - Use any prompt to generate a raw response -
Text Recognition (OCR) (
ocr
) - Model recognizes text in the image -
Visual Question Answering (
visual-question-answering
) - Model answers the question you submit in the prompt -
Captioning (short) (
caption
) - Model provides a short description of the image -
Captioning (
detailed-caption
) - Model provides a long description of the image -
Single-Label Classification (
classification
) - Model classifies the image content as one of the provided classes -
Multi-Label Classification (
multi-label-classification
) - Model classifies the image content as one or more of the provided classes -
Unprompted Object Detection (
object-detection
) - Model detects and returns the bounding boxes for prominent objects in the image -
Structured Output Generation (
structured-answering
) - Model returns a JSON response with the specified fields
You need to provide your Google AI API key to use the Gemini model.
WARNING!
This block makes use of /v1beta
API of Google Gemini model - the implementation may change
in the future, without guarantee of backward compatibility.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/google_gemini@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the Gemini model. | ✅ |
output_structure |
Dict[str, str] |
Dictionary with structure of expected JSON response. | ❌ |
classes |
List[str] |
List of classes to be used. | ✅ |
api_key |
str |
Your Google AI API key. | ✅ |
model_version |
str |
Model to be used. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response.. | ❌ |
temperature |
float |
Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are.. | ✅ |
max_concurrent_requests |
int |
Number of concurrent requests that can be executed by block when batch of input images provided. If not given - block defaults to value configured globally in Workflows Execution Engine. Please restrict if you hit Google Gemini API limits.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Google Gemini
in version v1
.
- inputs:
Keypoint Detection Model
,CogVLM
,Image Convert Grayscale
,Anthropic Claude
,OpenAI
,Google Vision OCR
,Gaze Detection
,Florence-2 Model
,Pixelate Visualization
,Dimension Collapse
,Single-Label Classification Model
,SIFT
,OpenAI
,Stability AI Image Generation
,Mask Visualization
,Object Detection Model
,Image Slicer
,Triangle Visualization
,Cosine Similarity
,VLM as Detector
,CSV Formatter
,Polygon Zone Visualization
,Model Comparison Visualization
,Crop Visualization
,Classification Label Visualization
,LMM
,Reference Path Visualization
,Multi-Label Classification Model
,Twilio SMS Notification
,Google Gemini
,Bounding Box Visualization
,Image Contours
,Roboflow Custom Metadata
,Size Measurement
,Circle Visualization
,Perspective Correction
,Slack Notification
,Polygon Visualization
,VLM as Classifier
,Trace Visualization
,Webhook Sink
,Color Visualization
,Identify Changes
,LMM For Classification
,Image Threshold
,SIFT Comparison
,Absolute Static Crop
,Clip Comparison
,Line Counter Visualization
,Stitch Images
,Dot Visualization
,Dynamic Zone
,Instance Segmentation Model
,Background Color Visualization
,Florence-2 Model
,Model Monitoring Inference Aggregator
,Stitch OCR Detections
,Image Slicer
,Roboflow Dataset Upload
,Roboflow Dataset Upload
,Image Blur
,Email Notification
,Camera Focus
,Grid Visualization
,Blur Visualization
,Label Visualization
,Stability AI Inpainting
,Depth Estimation
,Image Preprocessing
,Llama 3.2 Vision
,Ellipse Visualization
,Halo Visualization
,Corner Visualization
,Camera Calibration
,Clip Comparison
,Buffer
,Dynamic Crop
,Relative Static Crop
,OpenAI
,Keypoint Visualization
,OCR Model
,Local File Sink
- outputs:
Keypoint Detection Model
,CogVLM
,Anthropic Claude
,Cache Set
,Google Vision OCR
,OpenAI
,Detections Classes Replacement
,Florence-2 Model
,Distance Measurement
,OpenAI
,VLM as Detector
,Stability AI Image Generation
,YOLO-World Model
,Mask Visualization
,Object Detection Model
,Triangle Visualization
,Path Deviation
,VLM as Detector
,Polygon Zone Visualization
,Model Comparison Visualization
,Crop Visualization
,LMM
,Classification Label Visualization
,Segment Anything 2 Model
,Keypoint Detection Model
,Reference Path Visualization
,Twilio SMS Notification
,Line Counter
,Google Gemini
,Bounding Box Visualization
,Roboflow Custom Metadata
,Size Measurement
,Circle Visualization
,Perspective Correction
,Slack Notification
,Pixel Color Count
,Polygon Visualization
,Instance Segmentation Model
,VLM as Classifier
,Trace Visualization
,Webhook Sink
,Color Visualization
,LMM For Classification
,Detections Consensus
,Image Threshold
,Detections Stitch
,SIFT Comparison
,JSON Parser
,Clip Comparison
,Line Counter Visualization
,Line Counter
,Dot Visualization
,Instance Segmentation Model
,Florence-2 Model
,Background Color Visualization
,Model Monitoring Inference Aggregator
,Roboflow Dataset Upload
,Roboflow Dataset Upload
,Image Blur
,Time in Zone
,Email Notification
,Grid Visualization
,Path Deviation
,CLIP Embedding Model
,Stability AI Inpainting
,Label Visualization
,Object Detection Model
,Llama 3.2 Vision
,Image Preprocessing
,Ellipse Visualization
,ONVIF Control
,VLM as Classifier
,Halo Visualization
,Corner Visualization
,Clip Comparison
,Cache Get
,Time in Zone
,Buffer
,Dynamic Crop
,OpenAI
,Keypoint Visualization
,Local File Sink
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Google Gemini
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..prompt
(string
): Text prompt to the Gemini model.classes
(list_of_values
): List of classes to be used.api_key
(Union[string
,secret
]): Your Google AI API key.model_version
(string
): Model to be used.temperature
(float
): Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are..
-
output
output
(Union[string
,language_model_output
]): String value ifstring
or LLM / VLM output iflanguage_model_output
.classes
(list_of_values
): List of values of any type.
Example JSON definition of step Google Gemini
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/google_gemini@v1",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"output_structure": {
"my_key": "description"
},
"classes": [
"class-a",
"class-b"
],
"api_key": "xxx-xxx",
"model_version": "gemini-2.0-flash-exp",
"max_tokens": "<block_does_not_provide_example>",
"temperature": "<block_does_not_provide_example>",
"max_concurrent_requests": "<block_does_not_provide_example>"
}