Grid Visualization¶
Class: GridVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.grid.v1.GridVisualizationBlockV1
The GridVisualization
block displays an array of images in a grid.
It will automatically resize the images to in the specified width and
height. The first image will be in the top left corner, and the rest
will be added to the right of the previous image until the row is full.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/grid_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
width |
int |
Width of the output image.. | ✅ |
height |
int |
Height of the output image.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Grid Visualization
in version v1
.
- inputs:
Line Counter
,OpenAI
,Dimension Collapse
,Florence-2 Model
,OpenAI
,Image Contours
,Dynamic Zone
,Clip Comparison
,Pixel Color Count
,Llama 3.2 Vision
,Clip Comparison
,Distance Measurement
,Line Counter
,Perspective Correction
,Google Gemini
,Buffer
,SIFT Comparison
,Size Measurement
,SIFT Comparison
,Template Matching
,Florence-2 Model
,Anthropic Claude
- outputs:
Keypoint Detection Model
,Gaze Detection
,Halo Visualization
,OpenAI
,Stability AI Image Generation
,Model Comparison Visualization
,Keypoint Visualization
,Crop Visualization
,Image Blur
,Bounding Box Visualization
,Roboflow Dataset Upload
,Template Matching
,Mask Visualization
,SmolVLM2
,VLM as Classifier
,Image Slicer
,Instance Segmentation Model
,Instance Segmentation Model
,QR Code Detection
,CLIP Embedding Model
,Ellipse Visualization
,OpenAI
,VLM as Detector
,Qwen2.5-VL
,Label Visualization
,Google Vision OCR
,Stability AI Outpainting
,Single-Label Classification Model
,Buffer
,Polygon Visualization
,Barcode Detection
,Dominant Color
,Reference Path Visualization
,Florence-2 Model
,OCR Model
,VLM as Detector
,Anthropic Claude
,Image Preprocessing
,Line Counter Visualization
,Florence-2 Model
,Image Contours
,Camera Calibration
,Single-Label Classification Model
,LMM For Classification
,Clip Comparison
,Corner Visualization
,Pixel Color Count
,Stitch Images
,SIFT
,Depth Estimation
,Time in Zone
,Perception Encoder Embedding Model
,Blur Visualization
,Image Convert Grayscale
,Image Slicer
,Background Color Visualization
,Dynamic Crop
,Perspective Correction
,Circle Visualization
,Triangle Visualization
,Dot Visualization
,CogVLM
,Multi-Label Classification Model
,Object Detection Model
,Segment Anything 2 Model
,VLM as Classifier
,LMM
,Color Visualization
,OpenAI
,Classification Label Visualization
,Stability AI Inpainting
,Byte Tracker
,Moondream2
,Absolute Static Crop
,Image Threshold
,Keypoint Detection Model
,Llama 3.2 Vision
,Pixelate Visualization
,Trace Visualization
,Detections Stabilizer
,Camera Focus
,Roboflow Dataset Upload
,Clip Comparison
,YOLO-World Model
,Google Gemini
,SIFT Comparison
,Multi-Label Classification Model
,Relative Static Crop
,Detections Stitch
,Object Detection Model
,Polygon Zone Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Grid Visualization
in version v1
has.
Bindings
-
input
images
(list_of_values
): Images to visualize.width
(integer
): Width of the output image..height
(integer
): Height of the output image..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Grid Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/grid_visualization@v1",
"images": "$steps.buffer.output",
"width": 2560,
"height": 1440
}