Skip to content

Halo Visualization

Class: HaloVisualizationBlockV1

Source: inference.core.workflows.core_steps.visualizations.halo.v1.HaloVisualizationBlockV1

The HaloVisualization block uses a detected polygon from an instance segmentation to draw a halo using sv.HaloAnnotator.

Type identifier

Use the following identifier in step "type" field: roboflow_core/halo_visualization@v1to add the block as as step in your workflow.

Properties

Name Type Description Refs
name str Enter a unique identifier for this step..
copy_image bool Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..
color_palette str Select a color palette for the visualised elements..
palette_size int Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..
custom_colors List[str] Define a list of custom colors for bounding boxes in HEX format..
color_axis str Choose how bounding box colors are assigned..
opacity float Transparency of the halo overlay..
kernel_size int Size of the average pooling kernel used for creating the halo..

The Refs column marks possibility to parametrise the property with dynamic values available in workflow runtime. See Bindings for more info.

Available Connections

Compatible Blocks

Check what blocks you can connect to Halo Visualization in version v1.

Input and Output Bindings

The available connections depend on its binding kinds. Check what binding kinds Halo Visualization in version v1 has.

Bindings
  • input

    • image (image): Select the input image to visualize on..
    • copy_image (boolean): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..
    • predictions (instance_segmentation_prediction): Predictions.
    • color_palette (string): Select a color palette for the visualised elements..
    • palette_size (integer): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..
    • custom_colors (list_of_values): Define a list of custom colors for bounding boxes in HEX format..
    • color_axis (string): Choose how bounding box colors are assigned..
    • opacity (float_zero_to_one): Transparency of the halo overlay..
    • kernel_size (integer): Size of the average pooling kernel used for creating the halo..
  • output

    • image (image): Image in workflows.
Example JSON definition of step Halo Visualization in version v1
{
    "name": "<your_step_name_here>",
    "type": "roboflow_core/halo_visualization@v1",
    "image": "$inputs.image",
    "copy_image": true,
    "predictions": "$steps.instance_segmentation_model.predictions",
    "color_palette": "DEFAULT",
    "palette_size": 10,
    "custom_colors": [
        "#FF0000",
        "#00FF00",
        "#0000FF"
    ],
    "color_axis": "CLASS",
    "opacity": 0.8,
    "kernel_size": 40
}