Halo Visualization¶
Class: HaloVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.halo.v1.HaloVisualizationBlockV1
The HaloVisualization
block uses a detected polygon
from an instance segmentation to draw a halo using
sv.HaloAnnotator
.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/halo_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
color_palette |
str |
Select a color palette for the visualised elements.. | ✅ |
palette_size |
int |
Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes.. | ✅ |
custom_colors |
List[str] |
Define a list of custom colors for bounding boxes in HEX format.. | ✅ |
color_axis |
str |
Choose how bounding box colors are assigned.. | ✅ |
opacity |
float |
Transparency of the halo overlay.. | ✅ |
kernel_size |
int |
Size of the average pooling kernel used for creating the halo.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Halo Visualization
in version v1
.
- inputs:
Triangle Visualization
,SIFT Comparison
,Detections Classes Replacement
,Dimension Collapse
,Clip Comparison
,Local File Sink
,VLM as Classifier
,Slack Notification
,Twilio SMS Notification
,Detections Stabilizer
,SIFT Comparison
,Google Vision OCR
,OCR Model
,Line Counter
,Email Notification
,CSV Formatter
,OpenAI
,Instance Segmentation Model
,Size Measurement
,Camera Calibration
,Ellipse Visualization
,Path Deviation
,Bounding Rectangle
,Detections Stitch
,Instance Segmentation Model
,Model Comparison Visualization
,Corner Visualization
,Velocity
,Pixelate Visualization
,LMM For Classification
,Reference Path Visualization
,Roboflow Custom Metadata
,Keypoint Detection Model
,OpenAI
,Mask Visualization
,Label Visualization
,Model Monitoring Inference Aggregator
,SIFT
,Image Convert Grayscale
,Stability AI Outpainting
,Polygon Zone Visualization
,Stability AI Inpainting
,Llama 3.2 Vision
,Buffer
,Perspective Correction
,Image Preprocessing
,Clip Comparison
,Camera Focus
,Dot Visualization
,Depth Estimation
,Keypoint Visualization
,Polygon Visualization
,Detections Filter
,OpenAI
,Distance Measurement
,Image Slicer
,Image Blur
,Image Contours
,Time in Zone
,Florence-2 Model
,CogVLM
,Google Gemini
,Background Color Visualization
,VLM as Detector
,Dynamic Crop
,Roboflow Dataset Upload
,Halo Visualization
,Classification Label Visualization
,Stitch OCR Detections
,PTZ Tracking (ONVIF)
.md),Crop Visualization
,Single-Label Classification Model
,JSON Parser
,Detections Transformation
,VLM as Detector
,Detections Consensus
,Anthropic Claude
,Blur Visualization
,Color Visualization
,Segment Anything 2 Model
,Template Matching
,Line Counter
,Relative Static Crop
,Object Detection Model
,Bounding Box Visualization
,Pixel Color Count
,Webhook Sink
,Identify Outliers
,Grid Visualization
,Stitch Images
,Dynamic Zone
,Path Deviation
,Image Slicer
,Line Counter Visualization
,Multi-Label Classification Model
,Florence-2 Model
,Stability AI Image Generation
,Image Threshold
,Identify Changes
,Trace Visualization
,Time in Zone
,Roboflow Dataset Upload
,Absolute Static Crop
,Circle Visualization
,Detection Offset
,LMM
,VLM as Classifier
- outputs:
Triangle Visualization
,Clip Comparison
,VLM as Classifier
,Keypoint Detection Model
,Google Vision OCR
,Detections Stabilizer
,SIFT Comparison
,OCR Model
,OpenAI
,Instance Segmentation Model
,Camera Calibration
,Ellipse Visualization
,Detections Stitch
,SmolVLM2
,Instance Segmentation Model
,Model Comparison Visualization
,Corner Visualization
,Dominant Color
,Byte Tracker
,Pixelate Visualization
,LMM For Classification
,Perception Encoder Embedding Model
,Reference Path Visualization
,Keypoint Detection Model
,Object Detection Model
,OpenAI
,Mask Visualization
,Label Visualization
,SIFT
,Image Convert Grayscale
,Stability AI Outpainting
,Single-Label Classification Model
,Polygon Zone Visualization
,Buffer
,Llama 3.2 Vision
,Stability AI Inpainting
,Perspective Correction
,Image Preprocessing
,Clip Comparison
,Camera Focus
,Dot Visualization
,OpenAI
,Keypoint Visualization
,Polygon Visualization
,Depth Estimation
,Qwen2.5-VL
,Image Blur
,Image Slicer
,Image Contours
,Florence-2 Model
,CogVLM
,Google Gemini
,CLIP Embedding Model
,Background Color Visualization
,VLM as Detector
,YOLO-World Model
,Roboflow Dataset Upload
,Dynamic Crop
,Halo Visualization
,Classification Label Visualization
,Crop Visualization
,Single-Label Classification Model
,VLM as Detector
,Anthropic Claude
,Template Matching
,Color Visualization
,Segment Anything 2 Model
,Blur Visualization
,Relative Static Crop
,Object Detection Model
,Bounding Box Visualization
,Pixel Color Count
,Barcode Detection
,QR Code Detection
,Stitch Images
,Line Counter Visualization
,Multi-Label Classification Model
,Image Slicer
,Florence-2 Model
,Multi-Label Classification Model
,Stability AI Image Generation
,Moondream2
,Image Threshold
,Trace Visualization
,Time in Zone
,Roboflow Dataset Upload
,Absolute Static Crop
,Circle Visualization
,Gaze Detection
,LMM
,VLM as Classifier
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Halo Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions
(instance_segmentation_prediction
): Predictions.color_palette
(string
): Select a color palette for the visualised elements..palette_size
(integer
): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..custom_colors
(list_of_values
): Define a list of custom colors for bounding boxes in HEX format..color_axis
(string
): Choose how bounding box colors are assigned..opacity
(float_zero_to_one
): Transparency of the halo overlay..kernel_size
(integer
): Size of the average pooling kernel used for creating the halo..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Halo Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/halo_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.instance_segmentation_model.predictions",
"color_palette": "DEFAULT",
"palette_size": 10,
"custom_colors": [
"#FF0000",
"#00FF00",
"#0000FF"
],
"color_axis": "CLASS",
"opacity": 0.8,
"kernel_size": 40
}