Icon Visualization¶
Class: IconVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.icon.v1.IconVisualizationBlockV1
The IconVisualization
block draws icons on an image using Supervision's sv.IconAnnotator
.
It supports two modes:
1. Static Mode: Position an icon at a fixed location (e.g., for watermarks)
2. Dynamic Mode: Position icons based on detection coordinates
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/icon_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
mode |
str |
Mode for placing icons: 'static' for fixed position (watermark), 'dynamic' for detection-based. | ✅ |
icon_width |
int |
Width of the icon in pixels. | ✅ |
icon_height |
int |
Height of the icon in pixels. | ✅ |
position |
str |
Position relative to detection for dynamic mode. | ✅ |
x_position |
int |
X coordinate for static mode. Positive values from left edge, negative from right edge. | ✅ |
y_position |
int |
Y coordinate for static mode. Positive values from top edge, negative from bottom edge. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Icon Visualization
in version v1
.
- inputs:
Crop Visualization
,Grid Visualization
,Stability AI Inpainting
,Object Detection Model
,LMM For Classification
,Detections Merge
,Google Gemini
,OpenAI
,Detections Classes Replacement
,Image Blur
,Byte Tracker
,YOLO-World Model
,VLM as Classifier
,Detections Stabilizer
,Line Counter
,SIFT
,Florence-2 Model
,Google Vision OCR
,Detections Transformation
,Velocity
,Keypoint Detection Model
,Roboflow Dataset Upload
,Single-Label Classification Model
,Line Counter
,Detections Consensus
,Stability AI Outpainting
,Perspective Correction
,Line Counter Visualization
,Dot Visualization
,Dynamic Crop
,Local File Sink
,Llama 3.2 Vision
,Instance Segmentation Model
,Bounding Box Visualization
,Depth Estimation
,Image Contours
,Detections Filter
,Background Color Visualization
,Ellipse Visualization
,Anthropic Claude
,Camera Focus
,Roboflow Custom Metadata
,Roboflow Dataset Upload
,Color Visualization
,Stitch Images
,Identify Changes
,Keypoint Detection Model
,Bounding Rectangle
,Label Visualization
,Moondream2
,Relative Static Crop
,Identify Outliers
,Byte Tracker
,SIFT Comparison
,Object Detection Model
,Reference Path Visualization
,Multi-Label Classification Model
,Stitch OCR Detections
,Distance Measurement
,VLM as Classifier
,Webhook Sink
,Instance Segmentation Model
,Keypoint Visualization
,Path Deviation
,Slack Notification
,Model Monitoring Inference Aggregator
,Gaze Detection
,Time in Zone
,Segment Anything 2 Model
,Email Notification
,OpenAI
,Blur Visualization
,Image Threshold
,Image Slicer
,SIFT Comparison
,Dynamic Zone
,Image Preprocessing
,Stability AI Image Generation
,Trace Visualization
,Classification Label Visualization
,CogVLM
,Mask Visualization
,Image Convert Grayscale
,PTZ Tracking (ONVIF)
.md),Path Deviation
,Twilio SMS Notification
,Overlap Filter
,Byte Tracker
,Pixel Color Count
,JSON Parser
,Polygon Zone Visualization
,Template Matching
,OCR Model
,CSV Formatter
,Camera Calibration
,Detections Stitch
,Icon Visualization
,Model Comparison Visualization
,Pixelate Visualization
,QR Code Generator
,Time in Zone
,Florence-2 Model
,Image Slicer
,Halo Visualization
,Absolute Static Crop
,VLM as Detector
,OpenAI
,Detection Offset
,Circle Visualization
,Corner Visualization
,Triangle Visualization
,VLM as Detector
,LMM
,Clip Comparison
,Polygon Visualization
- outputs:
Crop Visualization
,Stability AI Inpainting
,Object Detection Model
,LMM For Classification
,Google Gemini
,Image Blur
,YOLO-World Model
,Clip Comparison
,VLM as Classifier
,Detections Stabilizer
,SIFT
,Florence-2 Model
,Google Vision OCR
,Keypoint Detection Model
,Single-Label Classification Model
,Roboflow Dataset Upload
,Barcode Detection
,Perception Encoder Embedding Model
,Stability AI Outpainting
,Perspective Correction
,Dominant Color
,Line Counter Visualization
,Dot Visualization
,Dynamic Crop
,Llama 3.2 Vision
,Instance Segmentation Model
,Bounding Box Visualization
,Depth Estimation
,Image Contours
,Ellipse Visualization
,Background Color Visualization
,CLIP Embedding Model
,Anthropic Claude
,Camera Focus
,Keypoint Detection Model
,Moondream2
,Roboflow Dataset Upload
,Color Visualization
,Stitch Images
,QR Code Detection
,Label Visualization
,SmolVLM2
,Relative Static Crop
,Byte Tracker
,Object Detection Model
,Multi-Label Classification Model
,Reference Path Visualization
,VLM as Classifier
,Buffer
,Instance Segmentation Model
,Gaze Detection
,Keypoint Visualization
,Time in Zone
,Segment Anything 2 Model
,OpenAI
,Blur Visualization
,Image Threshold
,Image Slicer
,SIFT Comparison
,Image Preprocessing
,Trace Visualization
,CogVLM
,Stability AI Image Generation
,Classification Label Visualization
,Mask Visualization
,Image Convert Grayscale
,Pixel Color Count
,Polygon Zone Visualization
,Template Matching
,OCR Model
,Camera Calibration
,Detections Stitch
,Icon Visualization
,Model Comparison Visualization
,Pixelate Visualization
,LMM
,Multi-Label Classification Model
,Florence-2 Model
,Clip Comparison
,Image Slicer
,Single-Label Classification Model
,Halo Visualization
,Absolute Static Crop
,VLM as Detector
,OpenAI
,Circle Visualization
,Corner Visualization
,VLM as Detector
,Triangle Visualization
,Qwen2.5-VL
,OpenAI
,Polygon Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Icon Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..icon
(image
): The icon image to place on the input image (PNG with transparency recommended).mode
(string
): Mode for placing icons: 'static' for fixed position (watermark), 'dynamic' for detection-based.predictions
(Union[keypoint_detection_prediction
,object_detection_prediction
,instance_segmentation_prediction
]): Model predictions to place icons on (required for dynamic mode).icon_width
(integer
): Width of the icon in pixels.icon_height
(integer
): Height of the icon in pixels.position
(string
): Position relative to detection for dynamic mode.x_position
(integer
): X coordinate for static mode. Positive values from left edge, negative from right edge.y_position
(integer
): Y coordinate for static mode. Positive values from top edge, negative from bottom edge.
-
output
image
(image
): Image in workflows.
Example JSON definition of step Icon Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/icon_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"icon": "$inputs.icon",
"mode": "static",
"predictions": "$steps.object_detection_model.predictions",
"icon_width": 64,
"icon_height": 64,
"position": "TOP_CENTER",
"x_position": 10,
"y_position": 10
}