Icon Visualization¶
Class: IconVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.icon.v1.IconVisualizationBlockV1
The IconVisualization block draws icons on an image using Supervision's sv.IconAnnotator.
It supports two modes:
1. Static Mode: Position an icon at a fixed location (e.g., for watermarks)
2. Dynamic Mode: Position icons based on detection coordinates
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/icon_visualization@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
mode |
str |
Mode for placing icons: 'static' for fixed position (watermark), 'dynamic' for detection-based. | ✅ |
icon_width |
int |
Width of the icon in pixels. | ✅ |
icon_height |
int |
Height of the icon in pixels. | ✅ |
position |
str |
Position relative to detection for dynamic mode. | ✅ |
x_position |
int |
X coordinate for static mode. Positive values from left edge, negative from right edge. | ✅ |
y_position |
int |
Y coordinate for static mode. Positive values from top edge, negative from bottom edge. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Icon Visualization in version v1.
- inputs:
Llama 3.2 Vision,SAM 3,Polygon Zone Visualization,Pixelate Visualization,Distance Measurement,Trace Visualization,Roboflow Custom Metadata,Detections Transformation,Image Threshold,Image Slicer,Icon Visualization,Stability AI Outpainting,Model Comparison Visualization,Dynamic Zone,Stitch Images,Florence-2 Model,Single-Label Classification Model,Relative Static Crop,Absolute Static Crop,SIFT Comparison,SAM 3,Moondream2,Florence-2 Model,LMM For Classification,Anthropic Claude,Image Blur,Stability AI Image Generation,Camera Calibration,Local File Sink,VLM as Detector,Keypoint Detection Model,Detections Filter,Gaze Detection,Background Color Visualization,Keypoint Detection Model,Google Gemini,Model Monitoring Inference Aggregator,Roboflow Dataset Upload,Byte Tracker,Instance Segmentation Model,VLM as Classifier,CSV Formatter,Morphological Transformation,Motion Detection,OpenAI,YOLO-World Model,JSON Parser,CogVLM,Clip Comparison,Identify Changes,Path Deviation,Crop Visualization,Grid Visualization,Bounding Rectangle,SIFT,SAM 3,Anthropic Claude,Time in Zone,Detection Offset,SIFT Comparison,OpenAI,Line Counter,Detections Consensus,Path Deviation,Blur Visualization,Perspective Correction,Bounding Box Visualization,QR Code Generator,Velocity,Segment Anything 2 Model,Polygon Visualization,Dynamic Crop,Identify Outliers,LMM,OpenAI,Classification Label Visualization,Mask Visualization,Time in Zone,Google Gemini,Circle Visualization,Ellipse Visualization,Image Convert Grayscale,Time in Zone,Object Detection Model,OCR Model,Image Preprocessing,Color Visualization,Google Vision OCR,Keypoint Visualization,EasyOCR,Image Slicer,Email Notification,VLM as Detector,Line Counter,Detections Combine,Byte Tracker,Roboflow Dataset Upload,Overlap Filter,Triangle Visualization,Slack Notification,Halo Visualization,Object Detection Model,Corner Visualization,Detections Stabilizer,Dot Visualization,Image Contours,Twilio SMS Notification,Multi-Label Classification Model,Detections Merge,Seg Preview,Reference Path Visualization,Byte Tracker,Webhook Sink,PTZ Tracking (ONVIF).md),Detections Classes Replacement,Instance Segmentation Model,Detections Stitch,Contrast Equalization,Camera Focus,Stitch OCR Detections,Stability AI Inpainting,Line Counter Visualization,Template Matching,Email Notification,VLM as Classifier,OpenAI,Depth Estimation,Background Subtraction,Label Visualization,Pixel Color Count - outputs:
Llama 3.2 Vision,Blur Visualization,Perception Encoder Embedding Model,SAM 3,Perspective Correction,Polygon Zone Visualization,Bounding Box Visualization,Pixelate Visualization,Trace Visualization,QR Code Detection,Segment Anything 2 Model,Image Threshold,Image Slicer,Icon Visualization,Polygon Visualization,Dynamic Crop,Stability AI Outpainting,Model Comparison Visualization,Clip Comparison,Single-Label Classification Model,LMM,OpenAI,Stitch Images,Classification Label Visualization,Florence-2 Model,Mask Visualization,Single-Label Classification Model,Relative Static Crop,SIFT Comparison,Absolute Static Crop,SAM 3,Moondream2,Google Gemini,Circle Visualization,Florence-2 Model,LMM For Classification,Time in Zone,Ellipse Visualization,Image Convert Grayscale,Object Detection Model,OCR Model,SmolVLM2,Anthropic Claude,Image Preprocessing,Image Blur,Stability AI Image Generation,Google Vision OCR,Color Visualization,Keypoint Visualization,Camera Calibration,VLM as Detector,Keypoint Detection Model,EasyOCR,Image Slicer,VLM as Detector,Byte Tracker,Roboflow Dataset Upload,Gaze Detection,Background Color Visualization,Triangle Visualization,Keypoint Detection Model,Multi-Label Classification Model,Object Detection Model,Detections Stabilizer,Halo Visualization,Google Gemini,Corner Visualization,Roboflow Dataset Upload,Dot Visualization,Image Contours,Multi-Label Classification Model,Instance Segmentation Model,VLM as Classifier,Seg Preview,Reference Path Visualization,Morphological Transformation,Motion Detection,OpenAI,Instance Segmentation Model,Barcode Detection,Detections Stitch,Contrast Equalization,YOLO-World Model,Camera Focus,Stability AI Inpainting,Clip Comparison,CogVLM,Line Counter Visualization,Template Matching,CLIP Embedding Model,Email Notification,Crop Visualization,VLM as Classifier,Buffer,OpenAI,SIFT,Background Subtraction,Depth Estimation,SAM 3,Anthropic Claude,Pixel Color Count,Label Visualization,Qwen2.5-VL,OpenAI,Dominant Color
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Icon Visualization in version v1 has.
Bindings
-
input
image(image): The image to visualize on..copy_image(boolean): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..icon(image): The icon image to place on the input image (PNG with transparency recommended).mode(string): Mode for placing icons: 'static' for fixed position (watermark), 'dynamic' for detection-based.predictions(Union[rle_instance_segmentation_prediction,keypoint_detection_prediction,object_detection_prediction,instance_segmentation_prediction]): Model predictions to place icons on (required for dynamic mode).icon_width(integer): Width of the icon in pixels.icon_height(integer): Height of the icon in pixels.position(string): Position relative to detection for dynamic mode.x_position(integer): X coordinate for static mode. Positive values from left edge, negative from right edge.y_position(integer): Y coordinate for static mode. Positive values from top edge, negative from bottom edge.
-
output
image(image): Image in workflows.
Example JSON definition of step Icon Visualization in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/icon_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"icon": "$inputs.icon",
"mode": "static",
"predictions": "$steps.object_detection_model.predictions",
"icon_width": 64,
"icon_height": 64,
"position": "TOP_CENTER",
"x_position": 10,
"y_position": 10
}