Icon Visualization¶
Class: IconVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.icon.v1.IconVisualizationBlockV1
The IconVisualization block draws icons on an image using Supervision's sv.IconAnnotator.
It supports two modes:
1. Static Mode: Position an icon at a fixed location (e.g., for watermarks)
2. Dynamic Mode: Position icons based on detection coordinates
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/icon_visualization@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
mode |
str |
Mode for placing icons: 'static' for fixed position (watermark), 'dynamic' for detection-based. | ✅ |
icon_width |
int |
Width of the icon in pixels. | ✅ |
icon_height |
int |
Height of the icon in pixels. | ✅ |
position |
str |
Position relative to detection for dynamic mode. | ✅ |
x_position |
int |
X coordinate for static mode. Positive values from left edge, negative from right edge. | ✅ |
y_position |
int |
Y coordinate for static mode. Positive values from top edge, negative from bottom edge. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Icon Visualization in version v1.
- inputs:
Detections Stitch,Circle Visualization,Model Monitoring Inference Aggregator,Time in Zone,QR Code Generator,Dot Visualization,Gaze Detection,Overlap Filter,Single-Label Classification Model,Blur Visualization,Slack Notification,Florence-2 Model,Object Detection Model,Keypoint Detection Model,Llama 3.2 Vision,Crop Visualization,OCR Model,EasyOCR,Velocity,Image Threshold,Relative Static Crop,Triangle Visualization,Reference Path Visualization,Model Comparison Visualization,Corner Visualization,Image Slicer,Image Blur,SIFT Comparison,Bounding Box Visualization,Dynamic Zone,Stitch OCR Detections,Detections Transformation,YOLO-World Model,SIFT,Icon Visualization,Stability AI Inpainting,Distance Measurement,Google Vision OCR,Polygon Zone Visualization,Webhook Sink,CogVLM,Time in Zone,SIFT Comparison,Stability AI Outpainting,Classification Label Visualization,Multi-Label Classification Model,Morphological Transformation,JSON Parser,Depth Estimation,Detections Stabilizer,Instance Segmentation Model,Segment Anything 2 Model,VLM as Classifier,VLM as Detector,Local File Sink,Roboflow Custom Metadata,VLM as Classifier,Pixelate Visualization,PTZ Tracking (ONVIF).md),CSV Formatter,Pixel Color Count,Path Deviation,Byte Tracker,Identify Outliers,Detections Filter,Grid Visualization,Detections Classes Replacement,Path Deviation,Template Matching,Roboflow Dataset Upload,Image Slicer,Perspective Correction,Roboflow Dataset Upload,Anthropic Claude,Background Color Visualization,OpenAI,Bounding Rectangle,Dynamic Crop,Trace Visualization,Keypoint Detection Model,Detection Offset,Polygon Visualization,Identify Changes,Florence-2 Model,Moondream2,Line Counter,Byte Tracker,Keypoint Visualization,Byte Tracker,Detections Combine,Clip Comparison,Line Counter Visualization,VLM as Detector,OpenAI,Line Counter,Camera Calibration,Instance Segmentation Model,Mask Visualization,Camera Focus,Twilio SMS Notification,Detections Consensus,LMM,Image Preprocessing,Time in Zone,Color Visualization,LMM For Classification,Ellipse Visualization,Stability AI Image Generation,Email Notification,Halo Visualization,Stitch Images,Absolute Static Crop,Google Gemini,Object Detection Model,Image Contours,Label Visualization,Detections Merge,OpenAI,Contrast Equalization,Image Convert Grayscale - outputs:
CLIP Embedding Model,Detections Stitch,Circle Visualization,Time in Zone,Template Matching,Roboflow Dataset Upload,Image Slicer,Dot Visualization,Gaze Detection,Perception Encoder Embedding Model,Single-Label Classification Model,Blur Visualization,Clip Comparison,Perspective Correction,Roboflow Dataset Upload,Anthropic Claude,Background Color Visualization,OpenAI,Florence-2 Model,Object Detection Model,Keypoint Detection Model,Llama 3.2 Vision,Dynamic Crop,Crop Visualization,Barcode Detection,OCR Model,EasyOCR,Trace Visualization,Keypoint Detection Model,Image Threshold,Triangle Visualization,Reference Path Visualization,QR Code Detection,Model Comparison Visualization,Polygon Visualization,Corner Visualization,Image Slicer,Florence-2 Model,Image Blur,SmolVLM2,SIFT Comparison,Moondream2,Bounding Box Visualization,Buffer,Keypoint Visualization,Multi-Label Classification Model,Image Convert Grayscale,Byte Tracker,YOLO-World Model,Clip Comparison,Line Counter Visualization,SIFT,Icon Visualization,Stability AI Inpainting,VLM as Detector,Google Vision OCR,Polygon Zone Visualization,OpenAI,Instance Segmentation Model,CogVLM,Camera Calibration,Mask Visualization,Camera Focus,Stability AI Outpainting,Classification Label Visualization,Multi-Label Classification Model,LMM,Image Preprocessing,Morphological Transformation,Color Visualization,Depth Estimation,LMM For Classification,Detections Stabilizer,Instance Segmentation Model,Dominant Color,Ellipse Visualization,Stability AI Image Generation,Segment Anything 2 Model,Qwen2.5-VL,VLM as Classifier,VLM as Detector,Stitch Images,Halo Visualization,Absolute Static Crop,Google Gemini,VLM as Classifier,Object Detection Model,Pixelate Visualization,Image Contours,Pixel Color Count,Label Visualization,OpenAI,Single-Label Classification Model,Contrast Equalization,Relative Static Crop
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Icon Visualization in version v1 has.
Bindings
-
input
image(image): The image to visualize on..copy_image(boolean): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..icon(image): The icon image to place on the input image (PNG with transparency recommended).mode(string): Mode for placing icons: 'static' for fixed position (watermark), 'dynamic' for detection-based.predictions(Union[object_detection_prediction,instance_segmentation_prediction,keypoint_detection_prediction]): Model predictions to place icons on (required for dynamic mode).icon_width(integer): Width of the icon in pixels.icon_height(integer): Height of the icon in pixels.position(string): Position relative to detection for dynamic mode.x_position(integer): X coordinate for static mode. Positive values from left edge, negative from right edge.y_position(integer): Y coordinate for static mode. Positive values from top edge, negative from bottom edge.
-
output
image(image): Image in workflows.
Example JSON definition of step Icon Visualization in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/icon_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"icon": "$inputs.icon",
"mode": "static",
"predictions": "$steps.object_detection_model.predictions",
"icon_width": 64,
"icon_height": 64,
"position": "TOP_CENTER",
"x_position": 10,
"y_position": 10
}