Identify Outliers¶
Class: IdentifyOutliersBlockV1
Source: inference.core.workflows.core_steps.sampling.identify_outliers.v1.IdentifyOutliersBlockV1
Identify outlier embeddings compared to prior data.
This block accepts an embedding and compares it to a sample of prior data. If the embedding is an outlier, the block will return a boolean flag and the percentile of the embedding.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/identify_outliers@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Unique name of step in workflows. | ❌ |
threshold_percentile |
float |
The desired sensitivity. A higher value will result in more data points being classified as outliers.. | ✅ |
warmup |
int |
The number of data points to use for the initial average calculation. No outliers are identified during this period.. | ✅ |
window_size |
int |
The number of previous data points to consider in the sliding window algorithm.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Identify Outliers
in version v1
.
- inputs:
Identify Outliers
,Perception Encoder Embedding Model
,Line Counter
,Line Counter
,Image Contours
,SIFT Comparison
,CLIP Embedding Model
,Perspective Correction
,Detections Consensus
,Template Matching
,SIFT Comparison
,Identify Changes
,Clip Comparison
,Distance Measurement
,Pixel Color Count
- outputs:
Crop Visualization
,Blur Visualization
,PTZ Tracking (ONVIF)
.md),Line Counter Visualization
,Color Visualization
,Mask Visualization
,Circle Visualization
,Object Detection Model
,Multi-Label Classification Model
,Dynamic Zone
,Keypoint Detection Model
,Byte Tracker
,Detections Consensus
,Stitch Images
,Trace Visualization
,Roboflow Custom Metadata
,Object Detection Model
,Polygon Zone Visualization
,YOLO-World Model
,Halo Visualization
,Perspective Correction
,Stability AI Inpainting
,Template Matching
,Label Visualization
,Webhook Sink
,Segment Anything 2 Model
,Stability AI Image Generation
,Keypoint Detection Model
,Triangle Visualization
,Background Color Visualization
,Slack Notification
,Relative Static Crop
,Detections Stabilizer
,Corner Visualization
,Multi-Label Classification Model
,Byte Tracker
,Icon Visualization
,Pixelate Visualization
,Gaze Detection
,Model Comparison Visualization
,Instance Segmentation Model
,Time in Zone
,Reference Path Visualization
,Image Slicer
,Roboflow Dataset Upload
,Byte Tracker
,Identify Outliers
,Roboflow Dataset Upload
,Single-Label Classification Model
,Classification Label Visualization
,Polygon Visualization
,Keypoint Visualization
,Stability AI Outpainting
,Time in Zone
,Dot Visualization
,Email Notification
,Single-Label Classification Model
,Bounding Box Visualization
,Ellipse Visualization
,Model Monitoring Inference Aggregator
,Twilio SMS Notification
,Instance Segmentation Model
,SIFT Comparison
,Image Slicer
,Detections Stitch
,Identify Changes
,Dynamic Crop
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Identify Outliers
in version v1
has.
Bindings
-
input
embedding
(embedding
): Embedding of the current data..threshold_percentile
(float_zero_to_one
): The desired sensitivity. A higher value will result in more data points being classified as outliers..warmup
(integer
): The number of data points to use for the initial average calculation. No outliers are identified during this period..window_size
(integer
): The number of previous data points to consider in the sliding window algorithm..
-
output
is_outlier
(boolean
): Boolean flag.percentile
(float_zero_to_one
):float
value in range[0.0, 1.0]
.warming_up
(boolean
): Boolean flag.
Example JSON definition of step Identify Outliers
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/identify_outliers@v1",
"embedding": "$steps.clip.embedding",
"threshold_percentile": "$inputs.sample_rate",
"warmup": 100,
"window_size": 5
}