Identify Outliers¶
Class: IdentifyOutliersBlockV1
Source: inference.core.workflows.core_steps.sampling.identify_outliers.v1.IdentifyOutliersBlockV1
Identify outlier embeddings compared to prior data.
This block accepts an embedding and compares it to a sample of prior data. If the embedding is an outlier, the block will return a boolean flag and the percentile of the embedding.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/identify_outliers@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Unique name of step in workflows. | ❌ |
threshold_percentile |
float |
The desired sensitivity. A higher value will result in more data points being classified as outliers.. | ✅ |
warmup |
int |
The number of data points to use for the initial average calculation. No outliers are identified during this period.. | ✅ |
window_size |
int |
The number of previous data points to consider in the sliding window algorithm.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Identify Outliers
in version v1
.
- inputs:
Detections Consensus
,Identify Outliers
,CLIP Embedding Model
,Clip Comparison
,Pixel Color Count
,Line Counter
,Image Contours
,Identify Changes
,SIFT Comparison
,Template Matching
,Line Counter
,Distance Measurement
,SIFT Comparison
- outputs:
Identify Outliers
,Multi-Label Classification Model
,Single-Label Classification Model
,Classification Label Visualization
,Webhook Sink
,Background Color Visualization
,Dynamic Crop
,Mask Visualization
,Twilio SMS Notification
,Segment Anything 2 Model
,Model Monitoring Inference Aggregator
,Stability AI Image Generation
,Roboflow Dataset Upload
,Identify Changes
,Circle Visualization
,Crop Visualization
,Template Matching
,Multi-Label Classification Model
,Detections Stitch
,Detections Stabilizer
,Time in Zone
,Model Comparison Visualization
,Stitch Images
,Bounding Box Visualization
,Keypoint Detection Model
,SIFT Comparison
,Perspective Correction
,Relative Static Crop
,Color Visualization
,Slack Notification
,Ellipse Visualization
,Reference Path Visualization
,Blur Visualization
,Pixelate Visualization
,Email Notification
,Instance Segmentation Model
,Keypoint Visualization
,Time in Zone
,Single-Label Classification Model
,Byte Tracker
,YOLO-World Model
,Trace Visualization
,Polygon Visualization
,Triangle Visualization
,Detections Consensus
,Keypoint Detection Model
,Halo Visualization
,Dot Visualization
,Polygon Zone Visualization
,Instance Segmentation Model
,Roboflow Custom Metadata
,Gaze Detection
,Object Detection Model
,Corner Visualization
,Line Counter Visualization
,Roboflow Dataset Upload
,Image Slicer
,Byte Tracker
,Image Slicer
,Byte Tracker
,Label Visualization
,Object Detection Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Identify Outliers
in version v1
has.
Bindings
-
input
embedding
(embedding
): Embedding of the current data..threshold_percentile
(float_zero_to_one
): The desired sensitivity. A higher value will result in more data points being classified as outliers..warmup
(integer
): The number of data points to use for the initial average calculation. No outliers are identified during this period..window_size
(integer
): The number of previous data points to consider in the sliding window algorithm..
-
output
is_outlier
(boolean
): Boolean flag.percentile
(float_zero_to_one
):float
value in range[0.0, 1.0]
.warming_up
(boolean
): Boolean flag.
Example JSON definition of step Identify Outliers
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/identify_outliers@v1",
"embedding": "$steps.clip.embedding",
"threshold_percentile": "$inputs.sample_rate",
"warmup": 100,
"window_size": 5
}