Identify Outliers¶
Class: IdentifyOutliersBlockV1
Source: inference.core.workflows.core_steps.sampling.identify_outliers.v1.IdentifyOutliersBlockV1
Identify outlier embeddings compared to prior data.
This block accepts an embedding and compares it to a sample of prior data. If the embedding is an outlier, the block will return a boolean flag and the percentile of the embedding.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/identify_outliers@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Unique name of step in workflows. | ❌ |
threshold_percentile |
float |
The desired sensitivity. A higher value will result in more data points being classified as outliers.. | ✅ |
warmup |
int |
The number of data points to use for the initial average calculation. No outliers are identified during this period.. | ✅ |
window_size |
int |
The number of previous data points to consider in the sliding window algorithm.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Identify Outliers
in version v1
.
- inputs:
Clip Comparison
,Detections Consensus
,CLIP Embedding Model
,Perception Encoder Embedding Model
,SIFT Comparison
,SIFT Comparison
,Line Counter
,Template Matching
,Identify Outliers
,Distance Measurement
,Pixel Color Count
,Line Counter
,Image Contours
,Perspective Correction
,Identify Changes
- outputs:
Crop Visualization
,Keypoint Detection Model
,Ellipse Visualization
,Stability AI Inpainting
,Stability AI Image Generation
,Blur Visualization
,Keypoint Detection Model
,Circle Visualization
,Pixelate Visualization
,YOLO-World Model
,Model Comparison Visualization
,Webhook Sink
,Stability AI Outpainting
,Detections Consensus
,Single-Label Classification Model
,Bounding Box Visualization
,Time in Zone
,Time in Zone
,Identify Outliers
,Background Color Visualization
,Object Detection Model
,Twilio SMS Notification
,Label Visualization
,Triangle Visualization
,Dynamic Crop
,Detections Stitch
,Instance Segmentation Model
,Keypoint Visualization
,Halo Visualization
,PTZ Tracking (ONVIF)
.md),Multi-Label Classification Model
,Corner Visualization
,Line Counter Visualization
,Time in Zone
,Template Matching
,Dot Visualization
,Slack Notification
,Roboflow Dataset Upload
,Icon Visualization
,Roboflow Custom Metadata
,Byte Tracker
,Polygon Zone Visualization
,Stitch Images
,Image Slicer
,Email Notification
,Relative Static Crop
,Segment Anything 2 Model
,SIFT Comparison
,Byte Tracker
,Image Slicer
,Gaze Detection
,Perspective Correction
,Byte Tracker
,Model Monitoring Inference Aggregator
,Instance Segmentation Model
,Classification Label Visualization
,Color Visualization
,Reference Path Visualization
,Roboflow Dataset Upload
,Mask Visualization
,Polygon Visualization
,Detections Stabilizer
,Dynamic Zone
,Multi-Label Classification Model
,Trace Visualization
,Identify Changes
,Single-Label Classification Model
,Object Detection Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Identify Outliers
in version v1
has.
Bindings
-
input
embedding
(embedding
): Embedding of the current data..threshold_percentile
(float_zero_to_one
): The desired sensitivity. A higher value will result in more data points being classified as outliers..warmup
(integer
): The number of data points to use for the initial average calculation. No outliers are identified during this period..window_size
(integer
): The number of previous data points to consider in the sliding window algorithm..
-
output
is_outlier
(boolean
): Boolean flag.percentile
(float_zero_to_one
):float
value in range[0.0, 1.0]
.warming_up
(boolean
): Boolean flag.
Example JSON definition of step Identify Outliers
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/identify_outliers@v1",
"embedding": "$steps.clip.embedding",
"threshold_percentile": "$inputs.sample_rate",
"warmup": 100,
"window_size": 5
}