Identify Outliers¶
Class: IdentifyOutliersBlockV1
Source: inference.core.workflows.core_steps.sampling.identify_outliers.v1.IdentifyOutliersBlockV1
Identify outlier embeddings compared to prior data.
This block accepts an embedding and compares it to a sample of prior data. If the embedding is an outlier, the block will return a boolean flag and the percentile of the embedding.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/identify_outliers@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Unique name of step in workflows. | ❌ |
threshold_percentile |
float |
The desired sensitivity. A higher value will result in more data points being classified as outliers.. | ✅ |
warmup |
int |
The number of data points to use for the initial average calculation. No outliers are identified during this period.. | ✅ |
window_size |
int |
The number of previous data points to consider in the sliding window algorithm.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Identify Outliers
in version v1
.
- inputs:
Identify Outliers
,Perspective Correction
,Pixel Color Count
,Clip Comparison
,Identify Changes
,SIFT Comparison
,Image Contours
,Perception Encoder Embedding Model
,Distance Measurement
,SIFT Comparison
,Line Counter
,Template Matching
,CLIP Embedding Model
,Line Counter
,Detections Consensus
- outputs:
YOLO-World Model
,Keypoint Detection Model
,Roboflow Dataset Upload
,Gaze Detection
,Circle Visualization
,PTZ Tracking (ONVIF)
.md),Roboflow Custom Metadata
,Single-Label Classification Model
,Template Matching
,Dynamic Zone
,Detections Stitch
,Instance Segmentation Model
,Color Visualization
,Detections Consensus
,Object Detection Model
,Identify Outliers
,Perspective Correction
,Model Monitoring Inference Aggregator
,Image Slicer
,Keypoint Detection Model
,Model Comparison Visualization
,Stitch Images
,Dynamic Crop
,Webhook Sink
,Pixelate Visualization
,Byte Tracker
,Reference Path Visualization
,Time in Zone
,Blur Visualization
,Ellipse Visualization
,Trace Visualization
,Corner Visualization
,Polygon Zone Visualization
,Triangle Visualization
,Stability AI Inpainting
,Classification Label Visualization
,Single-Label Classification Model
,Bounding Box Visualization
,Detections Stabilizer
,Halo Visualization
,Email Notification
,Polygon Visualization
,Slack Notification
,Object Detection Model
,Dot Visualization
,Label Visualization
,Byte Tracker
,Stability AI Outpainting
,Crop Visualization
,Stability AI Image Generation
,Identify Changes
,SIFT Comparison
,Mask Visualization
,Time in Zone
,Twilio SMS Notification
,Segment Anything 2 Model
,Roboflow Dataset Upload
,Byte Tracker
,Line Counter Visualization
,Instance Segmentation Model
,Background Color Visualization
,Multi-Label Classification Model
,Image Slicer
,Keypoint Visualization
,Multi-Label Classification Model
,Relative Static Crop
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Identify Outliers
in version v1
has.
Bindings
-
input
embedding
(embedding
): Embedding of the current data..threshold_percentile
(float_zero_to_one
): The desired sensitivity. A higher value will result in more data points being classified as outliers..warmup
(integer
): The number of data points to use for the initial average calculation. No outliers are identified during this period..window_size
(integer
): The number of previous data points to consider in the sliding window algorithm..
-
output
is_outlier
(boolean
): Boolean flag.percentile
(float_zero_to_one
):float
value in range[0.0, 1.0]
.warming_up
(boolean
): Boolean flag.
Example JSON definition of step Identify Outliers
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/identify_outliers@v1",
"embedding": "$steps.clip.embedding",
"threshold_percentile": "$inputs.sample_rate",
"warmup": 100,
"window_size": 5
}