Instance Segmentation Model¶
v2¶
Class: RoboflowInstanceSegmentationModelBlockV2
(there are multiple versions of this block)
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Run inference on an instance segmentation model hosted on or uploaded to Roboflow.
You can query any model that is private to your account, or any public model available on Roboflow Universe.
You will need to set your Roboflow API key in your Inference environment to use this block. To learn more about setting your Roboflow API key, refer to the Inference documentation.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/roboflow_instance_segmentation_model@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
model_id |
str |
Roboflow model identifier.. | ✅ |
confidence |
float |
Confidence threshold for predictions.. | ✅ |
class_filter |
List[str] |
List of accepted classes. Classes must exist in the model's training set.. | ✅ |
iou_threshold |
float |
Minimum overlap threshold between boxes to combine them into a single detection, used in NMS. Learn more.. | ✅ |
max_detections |
int |
Maximum number of detections to return.. | ✅ |
class_agnostic_nms |
bool |
Boolean flag to specify if NMS is to be used in class-agnostic mode.. | ✅ |
max_candidates |
int |
Maximum number of candidates as NMS input to be taken into account.. | ✅ |
mask_decode_mode |
str |
Parameter of mask decoding in prediction post-processing.. | ✅ |
tradeoff_factor |
float |
Post-processing parameter to dictate tradeoff between fast and accurate.. | ✅ |
disable_active_learning |
bool |
Boolean flag to disable project-level active learning for this block.. | ✅ |
active_learning_target_dataset |
str |
Target dataset for active learning, if enabled.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Instance Segmentation Model
in version v2
.
- inputs:
Polygon Zone Visualization
,Identify Outliers
,Distance Measurement
,VLM as Classifier
,LMM For Classification
,Dot Visualization
,Morphological Transformation
,Size Measurement
,Blur Visualization
,Perspective Correction
,Clip Comparison
,Corner Visualization
,LMM
,Pixel Color Count
,Florence-2 Model
,PTZ Tracking (ONVIF)
.md),Grid Visualization
,Image Threshold
,Florence-2 Model
,Halo Visualization
,OpenAI
,Keypoint Detection Model
,Multi-Label Classification Model
,CogVLM
,EasyOCR
,Line Counter Visualization
,Stitch OCR Detections
,VLM as Detector
,Stability AI Outpainting
,VLM as Classifier
,Twilio SMS Notification
,Keypoint Detection Model
,Identify Changes
,Google Vision OCR
,Camera Focus
,Roboflow Dataset Upload
,SIFT
,Email Notification
,Clip Comparison
,Image Slicer
,Image Convert Grayscale
,Keypoint Visualization
,Instance Segmentation Model
,Template Matching
,OCR Model
,Llama 3.2 Vision
,Bounding Box Visualization
,Instance Segmentation Model
,Line Counter
,Reference Path Visualization
,Dynamic Crop
,Roboflow Dataset Upload
,Mask Visualization
,Image Preprocessing
,Background Color Visualization
,Local File Sink
,Webhook Sink
,Camera Calibration
,OpenAI
,Depth Estimation
,Image Slicer
,QR Code Generator
,SIFT Comparison
,Trace Visualization
,Object Detection Model
,Contrast Equalization
,Buffer
,Crop Visualization
,Stability AI Image Generation
,Dimension Collapse
,SIFT Comparison
,Roboflow Custom Metadata
,Object Detection Model
,Model Comparison Visualization
,Pixelate Visualization
,Dynamic Zone
,Model Monitoring Inference Aggregator
,Line Counter
,Anthropic Claude
,Relative Static Crop
,Image Contours
,Polygon Visualization
,OpenAI
,Slack Notification
,JSON Parser
,Triangle Visualization
,Single-Label Classification Model
,Classification Label Visualization
,Circle Visualization
,Image Blur
,Label Visualization
,Google Gemini
,VLM as Detector
,Absolute Static Crop
,Stability AI Inpainting
,Icon Visualization
,Ellipse Visualization
,Multi-Label Classification Model
,Color Visualization
,CSV Formatter
,Single-Label Classification Model
,Detections Consensus
,Stitch Images
- outputs:
Byte Tracker
,Webhook Sink
,Distance Measurement
,Time in Zone
,Dot Visualization
,Detections Stitch
,Size Measurement
,Time in Zone
,Blur Visualization
,Velocity
,Perspective Correction
,Detections Transformation
,Corner Visualization
,Trace Visualization
,Object Detection Model
,Byte Tracker
,Overlap Filter
,PTZ Tracking (ONVIF)
.md),Florence-2 Model
,Crop Visualization
,SmolVLM2
,Florence-2 Model
,Halo Visualization
,Roboflow Custom Metadata
,Keypoint Detection Model
,Object Detection Model
,Multi-Label Classification Model
,Model Comparison Visualization
,Detections Combine
,Detection Offset
,Pixelate Visualization
,Dynamic Zone
,Model Monitoring Inference Aggregator
,Byte Tracker
,Line Counter
,Time in Zone
,Polygon Visualization
,Path Deviation
,Keypoint Detection Model
,Triangle Visualization
,Roboflow Dataset Upload
,Detections Filter
,Instance Segmentation Model
,Single-Label Classification Model
,Detections Classes Replacement
,Bounding Rectangle
,Circle Visualization
,Detections Stabilizer
,Label Visualization
,Bounding Box Visualization
,Line Counter
,Instance Segmentation Model
,Stability AI Inpainting
,Multi-Label Classification Model
,Icon Visualization
,Ellipse Visualization
,Dynamic Crop
,Color Visualization
,Roboflow Dataset Upload
,Segment Anything 2 Model
,Detections Merge
,Mask Visualization
,Qwen2.5-VL
,Path Deviation
,Single-Label Classification Model
,Detections Consensus
,Moondream2
,Background Color Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Instance Segmentation Model
in version v2
has.
Bindings
-
input
images
(image
): The image to infer on..model_id
(roboflow_model_id
): Roboflow model identifier..confidence
(float_zero_to_one
): Confidence threshold for predictions..class_filter
(list_of_values
): List of accepted classes. Classes must exist in the model's training set..iou_threshold
(float_zero_to_one
): Minimum overlap threshold between boxes to combine them into a single detection, used in NMS. Learn more..max_detections
(integer
): Maximum number of detections to return..class_agnostic_nms
(boolean
): Boolean flag to specify if NMS is to be used in class-agnostic mode..max_candidates
(integer
): Maximum number of candidates as NMS input to be taken into account..mask_decode_mode
(string
): Parameter of mask decoding in prediction post-processing..tradeoff_factor
(float_zero_to_one
): Post-processing parameter to dictate tradeoff between fast and accurate..disable_active_learning
(boolean
): Boolean flag to disable project-level active learning for this block..active_learning_target_dataset
(roboflow_project
): Target dataset for active learning, if enabled..
-
output
inference_id
(inference_id
): Inference identifier.predictions
(instance_segmentation_prediction
): Prediction with detected bounding boxes and segmentation masks in form of sv.Detections(...) object.model_id
(roboflow_model_id
): Roboflow model id.
Example JSON definition of step Instance Segmentation Model
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/roboflow_instance_segmentation_model@v2",
"images": "$inputs.image",
"model_id": "my_project/3",
"confidence": 0.3,
"class_filter": [
"a",
"b",
"c"
],
"iou_threshold": 0.4,
"max_detections": 300,
"class_agnostic_nms": true,
"max_candidates": 3000,
"mask_decode_mode": "accurate",
"tradeoff_factor": 0.3,
"disable_active_learning": true,
"active_learning_target_dataset": "my_project"
}
v1¶
Class: RoboflowInstanceSegmentationModelBlockV1
(there are multiple versions of this block)
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Run inference on an instance segmentation model hosted on or uploaded to Roboflow.
You can query any model that is private to your account, or any public model available on Roboflow Universe.
You will need to set your Roboflow API key in your Inference environment to use this block. To learn more about setting your Roboflow API key, refer to the Inference documentation.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/roboflow_instance_segmentation_model@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
model_id |
str |
Roboflow model identifier.. | ✅ |
confidence |
float |
Confidence threshold for predictions.. | ✅ |
class_filter |
List[str] |
List of accepted classes. Classes must exist in the model's training set.. | ✅ |
iou_threshold |
float |
Minimum overlap threshold between boxes to combine them into a single detection, used in NMS. Learn more.. | ✅ |
max_detections |
int |
Maximum number of detections to return.. | ✅ |
class_agnostic_nms |
bool |
Boolean flag to specify if NMS is to be used in class-agnostic mode.. | ✅ |
max_candidates |
int |
Maximum number of candidates as NMS input to be taken into account.. | ✅ |
mask_decode_mode |
str |
Parameter of mask decoding in prediction post-processing.. | ✅ |
tradeoff_factor |
float |
Post-processing parameter to dictate tradeoff between fast and accurate.. | ✅ |
disable_active_learning |
bool |
Boolean flag to disable project-level active learning for this block.. | ✅ |
active_learning_target_dataset |
str |
Target dataset for active learning, if enabled.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Instance Segmentation Model
in version v1
.
- inputs:
Polygon Zone Visualization
,Identify Outliers
,Distance Measurement
,VLM as Classifier
,LMM For Classification
,Dot Visualization
,Morphological Transformation
,Size Measurement
,Blur Visualization
,Perspective Correction
,Clip Comparison
,Corner Visualization
,LMM
,Pixel Color Count
,Florence-2 Model
,PTZ Tracking (ONVIF)
.md),Grid Visualization
,Image Threshold
,Florence-2 Model
,Halo Visualization
,OpenAI
,Keypoint Detection Model
,Multi-Label Classification Model
,CogVLM
,EasyOCR
,Line Counter Visualization
,Stitch OCR Detections
,VLM as Detector
,Stability AI Outpainting
,VLM as Classifier
,Twilio SMS Notification
,Keypoint Detection Model
,Identify Changes
,Google Vision OCR
,Camera Focus
,Roboflow Dataset Upload
,SIFT
,Email Notification
,Clip Comparison
,Image Slicer
,Image Convert Grayscale
,Keypoint Visualization
,Instance Segmentation Model
,Template Matching
,OCR Model
,Llama 3.2 Vision
,Bounding Box Visualization
,Instance Segmentation Model
,Line Counter
,Reference Path Visualization
,Dynamic Crop
,Roboflow Dataset Upload
,Mask Visualization
,Image Preprocessing
,Background Color Visualization
,Local File Sink
,Webhook Sink
,Camera Calibration
,OpenAI
,Depth Estimation
,Image Slicer
,QR Code Generator
,SIFT Comparison
,Trace Visualization
,Object Detection Model
,Contrast Equalization
,Buffer
,Crop Visualization
,Stability AI Image Generation
,Dimension Collapse
,SIFT Comparison
,Roboflow Custom Metadata
,Object Detection Model
,Model Comparison Visualization
,Pixelate Visualization
,Dynamic Zone
,Model Monitoring Inference Aggregator
,Line Counter
,Anthropic Claude
,Relative Static Crop
,Image Contours
,Polygon Visualization
,OpenAI
,Slack Notification
,JSON Parser
,Triangle Visualization
,Single-Label Classification Model
,Classification Label Visualization
,Circle Visualization
,Image Blur
,Label Visualization
,Google Gemini
,VLM as Detector
,Absolute Static Crop
,Stability AI Inpainting
,Icon Visualization
,Ellipse Visualization
,Multi-Label Classification Model
,Color Visualization
,CSV Formatter
,Single-Label Classification Model
,Detections Consensus
,Stitch Images
- outputs:
Byte Tracker
,Distance Measurement
,Time in Zone
,Polygon Zone Visualization
,LMM For Classification
,Dot Visualization
,Morphological Transformation
,Size Measurement
,Perspective Correction
,Blur Visualization
,Corner Visualization
,LMM
,Pixel Color Count
,Florence-2 Model
,PTZ Tracking (ONVIF)
.md),Image Threshold
,Florence-2 Model
,Halo Visualization
,OpenAI
,CogVLM
,Detections Combine
,Detection Offset
,Byte Tracker
,Line Counter Visualization
,Perception Encoder Embedding Model
,Stitch OCR Detections
,Stability AI Outpainting
,Twilio SMS Notification
,CLIP Embedding Model
,Google Vision OCR
,Roboflow Dataset Upload
,Email Notification
,Instance Segmentation Model
,Clip Comparison
,Keypoint Visualization
,Llama 3.2 Vision
,Bounding Box Visualization
,Line Counter
,Instance Segmentation Model
,Detections Stabilizer
,Reference Path Visualization
,Dynamic Crop
,Roboflow Dataset Upload
,Mask Visualization
,Image Preprocessing
,Background Color Visualization
,Local File Sink
,Webhook Sink
,OpenAI
,QR Code Generator
,Detections Stitch
,Trace Visualization
,Time in Zone
,Velocity
,Detections Transformation
,Contrast Equalization
,Byte Tracker
,Cache Set
,Crop Visualization
,Stability AI Image Generation
,Overlap Filter
,SIFT Comparison
,Roboflow Custom Metadata
,Cache Get
,Model Comparison Visualization
,Pixelate Visualization
,Dynamic Zone
,Model Monitoring Inference Aggregator
,Line Counter
,Anthropic Claude
,Time in Zone
,Polygon Visualization
,Slack Notification
,OpenAI
,Path Deviation
,Triangle Visualization
,Detections Filter
,YOLO-World Model
,Classification Label Visualization
,Detections Classes Replacement
,Bounding Rectangle
,Circle Visualization
,Image Blur
,Label Visualization
,Google Gemini
,Stability AI Inpainting
,Icon Visualization
,Ellipse Visualization
,Color Visualization
,Detections Merge
,Path Deviation
,Detections Consensus
,Moondream2
,Segment Anything 2 Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Instance Segmentation Model
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..model_id
(roboflow_model_id
): Roboflow model identifier..confidence
(float_zero_to_one
): Confidence threshold for predictions..class_filter
(list_of_values
): List of accepted classes. Classes must exist in the model's training set..iou_threshold
(float_zero_to_one
): Minimum overlap threshold between boxes to combine them into a single detection, used in NMS. Learn more..max_detections
(integer
): Maximum number of detections to return..class_agnostic_nms
(boolean
): Boolean flag to specify if NMS is to be used in class-agnostic mode..max_candidates
(integer
): Maximum number of candidates as NMS input to be taken into account..mask_decode_mode
(string
): Parameter of mask decoding in prediction post-processing..tradeoff_factor
(float_zero_to_one
): Post-processing parameter to dictate tradeoff between fast and accurate..disable_active_learning
(boolean
): Boolean flag to disable project-level active learning for this block..active_learning_target_dataset
(roboflow_project
): Target dataset for active learning, if enabled..
-
output
inference_id
(string
): String value.predictions
(instance_segmentation_prediction
): Prediction with detected bounding boxes and segmentation masks in form of sv.Detections(...) object.
Example JSON definition of step Instance Segmentation Model
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/roboflow_instance_segmentation_model@v1",
"images": "$inputs.image",
"model_id": "my_project/3",
"confidence": 0.3,
"class_filter": [
"a",
"b",
"c"
],
"iou_threshold": 0.4,
"max_detections": 300,
"class_agnostic_nms": true,
"max_candidates": 3000,
"mask_decode_mode": "accurate",
"tradeoff_factor": 0.3,
"disable_active_learning": true,
"active_learning_target_dataset": "my_project"
}