Keypoint Visualization¶
Class: KeypointVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.keypoint.v1.KeypointVisualizationBlockV1
The KeypointVisualization
block uses a detections from an
keypoint detection model to draw keypoints on objects using
sv.VertexAnnotator
.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/keypoint_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
annotator_type |
str |
Type of annotator to be used for keypoint visualization.. | ❌ |
color |
str |
Color of the keypoint.. | ✅ |
text_color |
str |
Text color of the keypoint.. | ✅ |
text_scale |
float |
Scale of the text.. | ✅ |
text_thickness |
int |
Thickness of the text characters.. | ✅ |
text_padding |
int |
Padding around the text in pixels.. | ✅ |
thickness |
int |
Thickness of the outline in pixels.. | ✅ |
radius |
int |
Radius of the keypoint in pixels.. | ✅ |
edges |
List[Any] |
Mapping of keypoints to edges. List of pairs of indices.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Keypoint Visualization
in version v1
.
- inputs:
Crop Visualization
,Keypoint Detection Model
,Detections Filter
,Ellipse Visualization
,VLM as Classifier
,Stability AI Inpainting
,Stability AI Image Generation
,Blur Visualization
,Keypoint Detection Model
,Circle Visualization
,Pixelate Visualization
,Model Comparison Visualization
,Webhook Sink
,Stability AI Outpainting
,Detections Consensus
,Detections Transformation
,Bounding Box Visualization
,Grid Visualization
,VLM as Classifier
,Cosine Similarity
,Identify Outliers
,Background Color Visualization
,Llama 3.2 Vision
,Image Contours
,LMM
,Object Detection Model
,Twilio SMS Notification
,Label Visualization
,Triangle Visualization
,Dynamic Crop
,VLM as Detector
,Image Preprocessing
,Florence-2 Model
,Google Vision OCR
,Florence-2 Model
,Keypoint Visualization
,OCR Model
,Halo Visualization
,PTZ Tracking (ONVIF)
.md),Corner Visualization
,Line Counter Visualization
,LMM For Classification
,Template Matching
,Dot Visualization
,Size Measurement
,Clip Comparison
,Anthropic Claude
,Slack Notification
,Roboflow Dataset Upload
,Icon Visualization
,Roboflow Custom Metadata
,Depth Estimation
,Distance Measurement
,CogVLM
,Polygon Zone Visualization
,Stitch Images
,Image Slicer
,OpenAI
,Email Notification
,Relative Static Crop
,Detections Classes Replacement
,Google Gemini
,SIFT Comparison
,SIFT Comparison
,Line Counter
,Dimension Collapse
,Pixel Color Count
,Buffer
,Image Slicer
,Gaze Detection
,Image Threshold
,Perspective Correction
,Camera Focus
,JSON Parser
,Camera Calibration
,Classification Label Visualization
,Reference Path Visualization
,Color Visualization
,Model Monitoring Inference Aggregator
,Local File Sink
,Instance Segmentation Model
,OpenAI
,Clip Comparison
,Roboflow Dataset Upload
,Mask Visualization
,QR Code Generator
,OpenAI
,CSV Formatter
,Stitch OCR Detections
,SIFT
,Polygon Visualization
,Image Convert Grayscale
,VLM as Detector
,Dynamic Zone
,Detection Offset
,Image Blur
,Multi-Label Classification Model
,Trace Visualization
,Line Counter
,Absolute Static Crop
,Identify Changes
,Single-Label Classification Model
- outputs:
Crop Visualization
,Keypoint Detection Model
,Ellipse Visualization
,VLM as Classifier
,Stability AI Inpainting
,Stability AI Image Generation
,Blur Visualization
,Keypoint Detection Model
,Pixelate Visualization
,Circle Visualization
,YOLO-World Model
,Model Comparison Visualization
,Stability AI Outpainting
,Single-Label Classification Model
,Bounding Box Visualization
,VLM as Classifier
,Background Color Visualization
,Dominant Color
,Llama 3.2 Vision
,Image Contours
,LMM
,Object Detection Model
,Label Visualization
,Florence-2 Model
,Triangle Visualization
,Dynamic Crop
,VLM as Detector
,Detections Stitch
,Google Vision OCR
,Florence-2 Model
,Instance Segmentation Model
,Keypoint Visualization
,QR Code Detection
,OCR Model
,Halo Visualization
,Multi-Label Classification Model
,Corner Visualization
,Line Counter Visualization
,SmolVLM2
,LMM For Classification
,CLIP Embedding Model
,Time in Zone
,Perception Encoder Embedding Model
,Template Matching
,Dot Visualization
,Clip Comparison
,Anthropic Claude
,Roboflow Dataset Upload
,Icon Visualization
,Depth Estimation
,CogVLM
,Polygon Zone Visualization
,Stitch Images
,Image Slicer
,OpenAI
,Relative Static Crop
,Segment Anything 2 Model
,Google Gemini
,SIFT Comparison
,Buffer
,Pixel Color Count
,Image Slicer
,Gaze Detection
,Image Threshold
,Perspective Correction
,Byte Tracker
,Camera Focus
,Qwen2.5-VL
,Classification Label Visualization
,Instance Segmentation Model
,Reference Path Visualization
,Color Visualization
,Barcode Detection
,OpenAI
,Camera Calibration
,Clip Comparison
,Roboflow Dataset Upload
,Mask Visualization
,OpenAI
,SIFT
,Polygon Visualization
,VLM as Detector
,Detections Stabilizer
,Image Convert Grayscale
,Moondream2
,Multi-Label Classification Model
,Image Blur
,Trace Visualization
,Absolute Static Crop
,Image Preprocessing
,Single-Label Classification Model
,Object Detection Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Keypoint Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions
(keypoint_detection_prediction
): Predictions.color
(string
): Color of the keypoint..text_color
(string
): Text color of the keypoint..text_scale
(float
): Scale of the text..text_thickness
(integer
): Thickness of the text characters..text_padding
(integer
): Padding around the text in pixels..thickness
(integer
): Thickness of the outline in pixels..radius
(integer
): Radius of the keypoint in pixels..edges
(list_of_values
): Mapping of keypoints to edges. List of pairs of indices..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Keypoint Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/keypoint_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.keypoint_detection_model.predictions",
"annotator_type": "<block_does_not_provide_example>",
"color": "#A351FB",
"text_color": "black",
"text_scale": 0.5,
"text_thickness": 1,
"text_padding": 10,
"thickness": 2,
"radius": 10,
"edges": "$inputs.edges"
}