Keypoint Visualization¶
Class: KeypointVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.keypoint.v1.KeypointVisualizationBlockV1
The KeypointVisualization
block uses a detections from an
keypoint detection model to draw keypoints on objects using
sv.VertexAnnotator
.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/keypoint_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
annotator_type |
str |
Type of annotator to be used for keypoint visualization.. | ❌ |
color |
str |
Color of the keypoint.. | ✅ |
text_color |
str |
Text color of the keypoint.. | ✅ |
text_scale |
float |
Scale of the text.. | ✅ |
text_thickness |
int |
Thickness of the text characters.. | ✅ |
text_padding |
int |
Padding around the text in pixels.. | ✅ |
thickness |
int |
Thickness of the outline in pixels.. | ✅ |
radius |
int |
Radius of the keypoint in pixels.. | ✅ |
edges |
List[Any] |
Mapping of keypoints to edges. List of pairs of indices.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Keypoint Visualization
in version v1
.
- inputs:
Anthropic Claude
,Crop Visualization
,SIFT
,Stitch OCR Detections
,Line Counter
,Line Counter
,LMM For Classification
,Blur Visualization
,PTZ Tracking (ONVIF)
.md),Line Counter Visualization
,Color Visualization
,Image Contours
,Camera Focus
,Mask Visualization
,Image Convert Grayscale
,Circle Visualization
,Google Gemini
,Cosine Similarity
,Absolute Static Crop
,VLM as Classifier
,Object Detection Model
,Dynamic Zone
,Keypoint Detection Model
,Detections Consensus
,Stitch Images
,Trace Visualization
,Detections Filter
,Image Preprocessing
,Roboflow Custom Metadata
,OCR Model
,JSON Parser
,Detections Transformation
,Clip Comparison
,Polygon Zone Visualization
,LMM
,QR Code Generator
,Size Measurement
,Halo Visualization
,Perspective Correction
,Florence-2 Model
,Stability AI Inpainting
,Buffer
,Template Matching
,Webhook Sink
,Label Visualization
,Distance Measurement
,VLM as Detector
,Pixel Color Count
,Stability AI Image Generation
,Triangle Visualization
,Keypoint Detection Model
,Background Color Visualization
,Relative Static Crop
,Slack Notification
,Corner Visualization
,Multi-Label Classification Model
,Icon Visualization
,SIFT Comparison
,Pixelate Visualization
,Image Blur
,Gaze Detection
,Model Comparison Visualization
,VLM as Detector
,CSV Formatter
,Instance Segmentation Model
,Llama 3.2 Vision
,Image Threshold
,VLM as Classifier
,Reference Path Visualization
,Google Vision OCR
,Image Slicer
,Roboflow Dataset Upload
,CogVLM
,Identify Outliers
,Depth Estimation
,Roboflow Dataset Upload
,Detection Offset
,Single-Label Classification Model
,OpenAI
,Classification Label Visualization
,Polygon Visualization
,Stability AI Outpainting
,Keypoint Visualization
,Dot Visualization
,Email Notification
,Grid Visualization
,Local File Sink
,OpenAI
,Bounding Box Visualization
,Camera Calibration
,Detections Classes Replacement
,Ellipse Visualization
,OpenAI
,Florence-2 Model
,Model Monitoring Inference Aggregator
,Image Slicer
,Twilio SMS Notification
,SIFT Comparison
,Dimension Collapse
,Identify Changes
,Clip Comparison
,Dynamic Crop
- outputs:
QR Code Detection
,Anthropic Claude
,Crop Visualization
,SIFT
,LMM For Classification
,Blur Visualization
,Line Counter Visualization
,Color Visualization
,Image Contours
,Camera Focus
,Mask Visualization
,Image Convert Grayscale
,Google Gemini
,Circle Visualization
,Absolute Static Crop
,VLM as Classifier
,Object Detection Model
,Multi-Label Classification Model
,Keypoint Detection Model
,Stitch Images
,Trace Visualization
,Image Preprocessing
,Qwen2.5-VL
,OCR Model
,Object Detection Model
,Clip Comparison
,SmolVLM2
,Polygon Zone Visualization
,LMM
,YOLO-World Model
,Halo Visualization
,CLIP Embedding Model
,Florence-2 Model
,Moondream2
,Perspective Correction
,Stability AI Inpainting
,Buffer
,Template Matching
,Label Visualization
,VLM as Detector
,Pixel Color Count
,Segment Anything 2 Model
,Perception Encoder Embedding Model
,Stability AI Image Generation
,Keypoint Detection Model
,Triangle Visualization
,Background Color Visualization
,Relative Static Crop
,Detections Stabilizer
,Corner Visualization
,Multi-Label Classification Model
,Icon Visualization
,Pixelate Visualization
,Image Blur
,Gaze Detection
,Model Comparison Visualization
,VLM as Detector
,Llama 3.2 Vision
,Time in Zone
,Instance Segmentation Model
,Image Threshold
,VLM as Classifier
,Google Vision OCR
,Reference Path Visualization
,Image Slicer
,Roboflow Dataset Upload
,CogVLM
,Byte Tracker
,Barcode Detection
,Depth Estimation
,Roboflow Dataset Upload
,Single-Label Classification Model
,OpenAI
,Classification Label Visualization
,Polygon Visualization
,Stability AI Outpainting
,Keypoint Visualization
,Dot Visualization
,OpenAI
,Single-Label Classification Model
,Bounding Box Visualization
,Camera Calibration
,Ellipse Visualization
,OpenAI
,Florence-2 Model
,Image Slicer
,Instance Segmentation Model
,SIFT Comparison
,Detections Stitch
,Dominant Color
,Clip Comparison
,Dynamic Crop
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Keypoint Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions
(keypoint_detection_prediction
): Predictions.color
(string
): Color of the keypoint..text_color
(string
): Text color of the keypoint..text_scale
(float
): Scale of the text..text_thickness
(integer
): Thickness of the text characters..text_padding
(integer
): Padding around the text in pixels..thickness
(integer
): Thickness of the outline in pixels..radius
(integer
): Radius of the keypoint in pixels..edges
(list_of_values
): Mapping of keypoints to edges. List of pairs of indices..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Keypoint Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/keypoint_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.keypoint_detection_model.predictions",
"annotator_type": "<block_does_not_provide_example>",
"color": "#A351FB",
"text_color": "black",
"text_scale": 0.5,
"text_thickness": 1,
"text_padding": 10,
"thickness": 2,
"radius": 10,
"edges": "$inputs.edges"
}