Keypoint Visualization¶
Class: KeypointVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.keypoint.v1.KeypointVisualizationBlockV1
The KeypointVisualization block uses a detections from an
keypoint detection model to draw keypoints on objects using
sv.VertexAnnotator.
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/keypoint_visualization@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
annotator_type |
str |
Type of annotator to be used for keypoint visualization.. | ❌ |
color |
str |
Color of the keypoint.. | ✅ |
text_color |
str |
Text color of the keypoint.. | ✅ |
text_scale |
float |
Scale of the text.. | ✅ |
text_thickness |
int |
Thickness of the text characters.. | ✅ |
text_padding |
int |
Padding around the text in pixels.. | ✅ |
thickness |
int |
Thickness of the outline in pixels.. | ✅ |
radius |
int |
Radius of the keypoint in pixels.. | ✅ |
edges |
List[Any] |
Mapping of keypoints to edges. List of pairs of indices.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Keypoint Visualization in version v1.
- inputs:
Google Vision OCR,Label Visualization,LMM For Classification,Blur Visualization,Background Color Visualization,Contrast Equalization,Bounding Box Visualization,Keypoint Visualization,Stability AI Outpainting,Reference Path Visualization,Image Slicer,Detections Filter,Pixelate Visualization,Single-Label Classification Model,Clip Comparison,CSV Formatter,Image Preprocessing,Color Visualization,SIFT Comparison,Object Detection Model,Email Notification,Anthropic Claude,Circle Visualization,Image Contours,Polygon Zone Visualization,Ellipse Visualization,Line Counter,Email Notification,Clip Comparison,VLM as Classifier,Model Monitoring Inference Aggregator,OCR Model,Absolute Static Crop,Depth Estimation,LMM,Morphological Transformation,Roboflow Dataset Upload,Gaze Detection,Detections Consensus,Crop Visualization,OpenAI,Image Convert Grayscale,VLM as Detector,Roboflow Custom Metadata,Florence-2 Model,CogVLM,Classification Label Visualization,Buffer,Keypoint Detection Model,Stitch OCR Detections,Keypoint Detection Model,Cosine Similarity,SIFT Comparison,Line Counter,JSON Parser,Camera Calibration,Polygon Visualization,PTZ Tracking (ONVIF).md),Detection Offset,Detections Classes Replacement,Icon Visualization,Identify Changes,Detections Transformation,Triangle Visualization,Template Matching,Roboflow Dataset Upload,Anthropic Claude,Model Comparison Visualization,Corner Visualization,Florence-2 Model,Distance Measurement,Google Gemini,Google Gemini,EasyOCR,VLM as Detector,Line Counter Visualization,Grid Visualization,Halo Visualization,Size Measurement,Stability AI Image Generation,Identify Outliers,QR Code Generator,Dynamic Zone,Twilio SMS Notification,Relative Static Crop,Dot Visualization,Llama 3.2 Vision,Image Blur,Slack Notification,Dimension Collapse,Local File Sink,OpenAI,Multi-Label Classification Model,Image Slicer,OpenAI,Stability AI Inpainting,Dynamic Crop,Camera Focus,Pixel Color Count,Webhook Sink,Image Threshold,VLM as Classifier,Perspective Correction,Mask Visualization,Trace Visualization,Instance Segmentation Model,OpenAI,Stitch Images,SIFT - outputs:
Google Vision OCR,Label Visualization,LMM For Classification,Blur Visualization,Background Color Visualization,Contrast Equalization,Reference Path Visualization,Keypoint Visualization,Stability AI Outpainting,Bounding Box Visualization,Image Slicer,Pixelate Visualization,Single-Label Classification Model,Clip Comparison,SAM 3,Perception Encoder Embedding Model,Seg Preview,Byte Tracker,Image Preprocessing,SAM 3,Color Visualization,SIFT Comparison,Qwen2.5-VL,Object Detection Model,Dominant Color,Anthropic Claude,Circle Visualization,Image Contours,Object Detection Model,QR Code Detection,Polygon Zone Visualization,Ellipse Visualization,Email Notification,Clip Comparison,Moondream2,VLM as Classifier,OCR Model,Absolute Static Crop,Depth Estimation,LMM,Time in Zone,Morphological Transformation,Roboflow Dataset Upload,Gaze Detection,Crop Visualization,OpenAI,Florence-2 Model,Barcode Detection,Image Convert Grayscale,SAM 3,CogVLM,VLM as Detector,Multi-Label Classification Model,Classification Label Visualization,Buffer,Keypoint Detection Model,Segment Anything 2 Model,Keypoint Detection Model,YOLO-World Model,Polygon Visualization,CLIP Embedding Model,Camera Calibration,Icon Visualization,Triangle Visualization,Template Matching,Roboflow Dataset Upload,Anthropic Claude,Model Comparison Visualization,Corner Visualization,Florence-2 Model,Google Gemini,Google Gemini,EasyOCR,VLM as Detector,Line Counter Visualization,SmolVLM2,Halo Visualization,Stability AI Image Generation,Relative Static Crop,Dot Visualization,Detections Stitch,Llama 3.2 Vision,Image Blur,OpenAI,Instance Segmentation Model,Multi-Label Classification Model,Image Slicer,OpenAI,Stability AI Inpainting,Dynamic Crop,Single-Label Classification Model,Camera Focus,Pixel Color Count,Detections Stabilizer,Instance Segmentation Model,VLM as Classifier,Mask Visualization,Perspective Correction,Image Threshold,OpenAI,Trace Visualization,Stitch Images,SIFT
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Keypoint Visualization in version v1 has.
Bindings
-
input
image(image): The image to visualize on..copy_image(boolean): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions(keypoint_detection_prediction): Predictions.color(string): Color of the keypoint..text_color(string): Text color of the keypoint..text_scale(float): Scale of the text..text_thickness(integer): Thickness of the text characters..text_padding(integer): Padding around the text in pixels..thickness(integer): Thickness of the outline in pixels..radius(integer): Radius of the keypoint in pixels..edges(list_of_values): Mapping of keypoints to edges. List of pairs of indices..
-
output
image(image): Image in workflows.
Example JSON definition of step Keypoint Visualization in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/keypoint_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.keypoint_detection_model.predictions",
"annotator_type": "<block_does_not_provide_example>",
"color": "#A351FB",
"text_color": "black",
"text_scale": 0.5,
"text_thickness": 1,
"text_padding": 10,
"thickness": 2,
"radius": 10,
"edges": "$inputs.edges"
}