Keypoint Visualization¶
Class: KeypointVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.keypoint.v1.KeypointVisualizationBlockV1
The KeypointVisualization
block uses a detections from an
keypoint detection model to draw keypoints on objects using
sv.VertexAnnotator
.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/keypoint_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
annotator_type |
str |
Type of annotator to be used for keypoint visualization.. | ❌ |
color |
str |
Color of the keypoint.. | ✅ |
text_color |
str |
Text color of the keypoint.. | ✅ |
text_scale |
float |
Scale of the text.. | ✅ |
text_thickness |
int |
Thickness of the text characters.. | ✅ |
text_padding |
int |
Padding around the text in pixels.. | ✅ |
thickness |
int |
Thickness of the outline in pixels.. | ✅ |
radius |
int |
Radius of the keypoint in pixels.. | ✅ |
edges |
List[Any] |
Mapping of keypoints to edges. List of pairs of indices.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Keypoint Visualization
in version v1
.
- inputs:
Keypoint Detection Model
,CogVLM
,Image Convert Grayscale
,Anthropic Claude
,Gaze Detection
,OpenAI
,Google Vision OCR
,Detections Classes Replacement
,Florence-2 Model
,Detection Offset
,Distance Measurement
,Pixelate Visualization
,Dimension Collapse
,Single-Label Classification Model
,SIFT
,VLM as Detector
,OpenAI
,Stability AI Image Generation
,SIFT Comparison
,Mask Visualization
,Object Detection Model
,Image Slicer
,Triangle Visualization
,Cosine Similarity
,VLM as Detector
,CSV Formatter
,Polygon Zone Visualization
,Model Comparison Visualization
,Crop Visualization
,Classification Label Visualization
,LMM
,Keypoint Detection Model
,Reference Path Visualization
,Multi-Label Classification Model
,Twilio SMS Notification
,Line Counter
,Google Gemini
,Bounding Box Visualization
,Image Contours
,Roboflow Custom Metadata
,Size Measurement
,Circle Visualization
,Perspective Correction
,Slack Notification
,Pixel Color Count
,Polygon Visualization
,Detections Transformation
,VLM as Classifier
,Trace Visualization
,Webhook Sink
,Color Visualization
,Identify Changes
,Detections Consensus
,LMM For Classification
,Image Threshold
,SIFT Comparison
,JSON Parser
,Absolute Static Crop
,Clip Comparison
,Line Counter Visualization
,Stitch Images
,Line Counter
,Dot Visualization
,Detections Filter
,Identify Outliers
,Dynamic Zone
,Instance Segmentation Model
,Background Color Visualization
,Florence-2 Model
,Model Monitoring Inference Aggregator
,Stitch OCR Detections
,Image Slicer
,Template Matching
,Roboflow Dataset Upload
,Roboflow Dataset Upload
,Image Blur
,Email Notification
,Camera Focus
,Grid Visualization
,Blur Visualization
,Label Visualization
,Stability AI Inpainting
,Depth Estimation
,Image Preprocessing
,Llama 3.2 Vision
,Ellipse Visualization
,ONVIF Control
,VLM as Classifier
,Halo Visualization
,Corner Visualization
,Camera Calibration
,Clip Comparison
,Buffer
,Dynamic Crop
,Relative Static Crop
,OpenAI
,Keypoint Visualization
,OCR Model
,Local File Sink
- outputs:
Keypoint Detection Model
,CogVLM
,OpenAI
,Anthropic Claude
,Google Vision OCR
,Image Convert Grayscale
,Gaze Detection
,Florence-2 Model
,SmolVLM2
,Pixelate Visualization
,Single-Label Classification Model
,SIFT
,Qwen2.5-VL
,VLM as Detector
,OpenAI
,Moondream2
,YOLO-World Model
,Stability AI Image Generation
,Object Detection Model
,Mask Visualization
,Image Slicer
,Barcode Detection
,Triangle Visualization
,VLM as Detector
,Polygon Zone Visualization
,Model Comparison Visualization
,Crop Visualization
,LMM
,Classification Label Visualization
,Segment Anything 2 Model
,Keypoint Detection Model
,Reference Path Visualization
,Multi-Label Classification Model
,Google Gemini
,Bounding Box Visualization
,Image Contours
,Circle Visualization
,Perspective Correction
,Pixel Color Count
,Polygon Visualization
,VLM as Classifier
,Instance Segmentation Model
,Trace Visualization
,Color Visualization
,LMM For Classification
,Image Threshold
,Detections Stitch
,SIFT Comparison
,Absolute Static Crop
,Clip Comparison
,Line Counter Visualization
,Stitch Images
,Multi-Label Classification Model
,QR Code Detection
,Dot Visualization
,Instance Segmentation Model
,Background Color Visualization
,Florence-2 Model
,Detections Stabilizer
,Image Slicer
,Template Matching
,Roboflow Dataset Upload
,Roboflow Dataset Upload
,Image Blur
,Camera Focus
,CLIP Embedding Model
,Object Detection Model
,Stability AI Inpainting
,Blur Visualization
,Label Visualization
,Depth Estimation
,Image Preprocessing
,Llama 3.2 Vision
,Byte Tracker
,Ellipse Visualization
,VLM as Classifier
,Halo Visualization
,Corner Visualization
,Camera Calibration
,Clip Comparison
,Time in Zone
,Buffer
,Dynamic Crop
,Single-Label Classification Model
,Relative Static Crop
,OpenAI
,Keypoint Visualization
,Dominant Color
,OCR Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Keypoint Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions
(keypoint_detection_prediction
): Predictions.color
(string
): Color of the keypoint..text_color
(string
): Text color of the keypoint..text_scale
(float
): Scale of the text..text_thickness
(integer
): Thickness of the text characters..text_padding
(integer
): Padding around the text in pixels..thickness
(integer
): Thickness of the outline in pixels..radius
(integer
): Radius of the keypoint in pixels..edges
(list_of_values
): Mapping of keypoints to edges. List of pairs of indices..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Keypoint Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/keypoint_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.keypoint_detection_model.predictions",
"annotator_type": "<block_does_not_provide_example>",
"color": "#A351FB",
"text_color": "black",
"text_scale": 0.5,
"text_thickness": 1,
"text_padding": 10,
"thickness": 2,
"radius": 10,
"edges": "$inputs.edges"
}