Skip to content

Label Visualization

Class: LabelVisualizationBlockV1

Source: inference.core.workflows.core_steps.visualizations.label.v1.LabelVisualizationBlockV1

The LabelVisualization block draws labels on an image at specific coordinates based on provided detections using Supervision's sv.LabelAnnotator.

Type identifier

Use the following identifier in step "type" field: roboflow_core/label_visualization@v1to add the block as as step in your workflow.

Properties

Name Type Description Refs
name str Enter a unique identifier for this step..
copy_image bool Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..
color_palette str Select a color palette for the visualised elements..
palette_size int Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..
custom_colors List[str] Define a list of custom colors for bounding boxes in HEX format..
color_axis str Choose how bounding box colors are assigned..
text str The type of text to display..
text_position str The anchor position for placing the label..
text_color str Color of the text..
text_scale float Scale of the text..
text_thickness int Thickness of the text characters..
text_padding int Padding around the text in pixels..
border_radius int Radius of the label in pixels..

The Refs column marks possibility to parametrise the property with dynamic values available in workflow runtime. See Bindings for more info.

Available Connections

Compatible Blocks

Check what blocks you can connect to Label Visualization in version v1.

Input and Output Bindings

The available connections depend on its binding kinds. Check what binding kinds Label Visualization in version v1 has.

Bindings
  • input

    • image (image): Select the input image to visualize on..
    • copy_image (boolean): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..
    • predictions (Union[instance_segmentation_prediction, keypoint_detection_prediction, object_detection_prediction]): Predictions.
    • color_palette (string): Select a color palette for the visualised elements..
    • palette_size (integer): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..
    • custom_colors (list_of_values): Define a list of custom colors for bounding boxes in HEX format..
    • color_axis (string): Choose how bounding box colors are assigned..
    • text (string): The type of text to display..
    • text_position (string): The anchor position for placing the label..
    • text_color (string): Color of the text..
    • text_scale (float): Scale of the text..
    • text_thickness (integer): Thickness of the text characters..
    • text_padding (integer): Padding around the text in pixels..
    • border_radius (integer): Radius of the label in pixels..
  • output

    • image (image): Image in workflows.
Example JSON definition of step Label Visualization in version v1
{
    "name": "<your_step_name_here>",
    "type": "roboflow_core/label_visualization@v1",
    "image": "$inputs.image",
    "copy_image": true,
    "predictions": "$steps.object_detection_model.predictions",
    "color_palette": "DEFAULT",
    "palette_size": 10,
    "custom_colors": [
        "#FF0000",
        "#00FF00",
        "#0000FF"
    ],
    "color_axis": "CLASS",
    "text": "LABEL",
    "text_position": "CENTER",
    "text_color": "WHITE",
    "text_scale": 1.0,
    "text_thickness": 1,
    "text_padding": 10,
    "border_radius": 0
}