Line Counter Visualization¶
Class: LineCounterZoneVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.line_zone.v1.LineCounterZoneVisualizationBlockV1
The LineCounterZoneVisualization block draws line
in an image with a specified color and opacity.
Please note: line zone will be drawn on top of image passed to this block,
this block should be placed before other visualization blocks in the workflow.
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/line_counter_visualization@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
zone |
List[Any] |
Line in the format [[x1, y1], [x2, y2]] consisting of exactly two points.. | ✅ |
color |
str |
Color of the zone.. | ✅ |
thickness |
int |
Thickness of the lines in pixels.. | ✅ |
text_thickness |
int |
Thickness of the text in pixels.. | ✅ |
text_scale |
float |
Scale of the text.. | ✅ |
count_in |
int |
Reference to the number of objects that crossed into the line zone.. | ✅ |
count_out |
int |
Reference to the number of objects that crossed out of the line zone.. | ✅ |
opacity |
float |
Transparency of the Mask overlay.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Line Counter Visualization in version v1.
- inputs:
PTZ Tracking (ONVIF).md),Local File Sink,Dot Visualization,Stability AI Inpainting,Reference Path Visualization,VLM as Classifier,VLM as Classifier,Stability AI Outpainting,Distance Measurement,Multi-Label Classification Model,QR Code Generator,Line Counter Visualization,Size Measurement,Ellipse Visualization,Roboflow Custom Metadata,Dimension Collapse,Identify Outliers,Background Color Visualization,Polygon Zone Visualization,CSV Formatter,Roboflow Dataset Upload,Contrast Equalization,EasyOCR,Object Detection Model,Image Slicer,Dynamic Zone,Google Gemini,Florence-2 Model,Gaze Detection,Google Vision OCR,Image Threshold,SIFT Comparison,Identify Changes,Detections Consensus,Image Preprocessing,Icon Visualization,OCR Model,Roboflow Dataset Upload,Clip Comparison,Absolute Static Crop,Pixelate Visualization,Image Blur,Buffer,Perspective Correction,Relative Static Crop,Florence-2 Model,Line Counter,Pixel Color Count,VLM as Detector,Llama 3.2 Vision,LMM For Classification,Line Counter,Clip Comparison,LMM,SIFT,Halo Visualization,Model Monitoring Inference Aggregator,Image Convert Grayscale,Anthropic Claude,Triangle Visualization,Cosine Similarity,Depth Estimation,Image Contours,Mask Visualization,Keypoint Detection Model,Image Slicer,CogVLM,Model Comparison Visualization,Stitch OCR Detections,Twilio SMS Notification,Template Matching,Single-Label Classification Model,Polygon Visualization,Corner Visualization,Crop Visualization,Stitch Images,Blur Visualization,Dynamic Crop,Camera Focus,Email Notification,OpenAI,VLM as Detector,Color Visualization,Classification Label Visualization,Label Visualization,OpenAI,Circle Visualization,Keypoint Visualization,Trace Visualization,Camera Calibration,SIFT Comparison,Instance Segmentation Model,Morphological Transformation,JSON Parser,Bounding Box Visualization,OpenAI,Grid Visualization,Slack Notification,Webhook Sink,Stability AI Image Generation - outputs:
Barcode Detection,Dot Visualization,Stability AI Inpainting,Reference Path Visualization,VLM as Classifier,CLIP Embedding Model,Object Detection Model,VLM as Classifier,Stability AI Outpainting,Perception Encoder Embedding Model,Multi-Label Classification Model,Line Counter Visualization,Ellipse Visualization,Polygon Zone Visualization,Background Color Visualization,Roboflow Dataset Upload,Contrast Equalization,EasyOCR,Object Detection Model,Image Slicer,Qwen2.5-VL,Google Gemini,Byte Tracker,Florence-2 Model,Gaze Detection,Google Vision OCR,Image Threshold,SIFT Comparison,Image Preprocessing,Icon Visualization,OCR Model,YOLO-World Model,Roboflow Dataset Upload,Clip Comparison,Absolute Static Crop,Pixelate Visualization,Buffer,Image Blur,Relative Static Crop,Perspective Correction,Florence-2 Model,Pixel Color Count,VLM as Detector,Single-Label Classification Model,LMM For Classification,Llama 3.2 Vision,Detections Stitch,LMM,Clip Comparison,SIFT,Multi-Label Classification Model,Halo Visualization,SmolVLM2,Image Convert Grayscale,Anthropic Claude,Triangle Visualization,Mask Visualization,Depth Estimation,Keypoint Detection Model,Image Contours,Image Slicer,CogVLM,Model Comparison Visualization,Template Matching,Time in Zone,QR Code Detection,Single-Label Classification Model,Moondream2,Polygon Visualization,Corner Visualization,Crop Visualization,Stitch Images,Blur Visualization,Keypoint Detection Model,Dynamic Crop,Detections Stabilizer,Instance Segmentation Model,OpenAI,Segment Anything 2 Model,Camera Focus,VLM as Detector,Color Visualization,Classification Label Visualization,Label Visualization,OpenAI,Circle Visualization,Keypoint Visualization,Trace Visualization,Camera Calibration,Instance Segmentation Model,Morphological Transformation,OpenAI,Bounding Box Visualization,Dominant Color,Seg Preview,Stability AI Image Generation
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Line Counter Visualization in version v1 has.
Bindings
-
input
image(image): The image to visualize on..copy_image(boolean): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..zone(list_of_values): Line in the format [[x1, y1], [x2, y2]] consisting of exactly two points..color(string): Color of the zone..thickness(integer): Thickness of the lines in pixels..text_thickness(integer): Thickness of the text in pixels..text_scale(float): Scale of the text..count_in(integer): Reference to the number of objects that crossed into the line zone..count_out(integer): Reference to the number of objects that crossed out of the line zone..opacity(float_zero_to_one): Transparency of the Mask overlay..
-
output
image(image): Image in workflows.
Example JSON definition of step Line Counter Visualization in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/line_counter_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"zone": [
[
0,
50
],
[
500,
50
]
],
"color": "WHITE",
"thickness": 2,
"text_thickness": 1,
"text_scale": 1.0,
"count_in": "$steps.line_counter.count_in",
"count_out": "$steps.line_counter.count_out",
"opacity": 0.3
}