Llama 3.2 Vision¶
Class: LlamaVisionBlockV1
Source: inference.core.workflows.core_steps.models.foundation.llama_vision.v1.LlamaVisionBlockV1
Ask a question to Llama 3.2 Vision model with vision capabilities.
You can specify arbitrary text prompts or predefined ones, the block supports the following types of prompt:
-
Open Prompt (
unconstrained
) - Use any prompt to generate a raw response -
Text Recognition (OCR) (
ocr
) - Model recognizes text in the image -
Visual Question Answering (
visual-question-answering
) - Model answers the question you submit in the prompt -
Captioning (short) (
caption
) - Model provides a short description of the image -
Captioning (
detailed-caption
) - Model provides a long description of the image -
Single-Label Classification (
classification
) - Model classifies the image content as one of the provided classes -
Multi-Label Classification (
multi-label-classification
) - Model classifies the image content as one or more of the provided classes -
Structured Output Generation (
structured-answering
) - Model returns a JSON response with the specified fields
Issues with structured prompting
Model tends to be quite unpredictable when structured output (in our case JSON document) is expected.
That problems may impact tasks like structured-answering
, classification
or multi-label-classification
.
The cause seems to be quite sensitive "filters" of inappropriate content embedded in model.
🛠️ API providers and model variants¶
Llama Vision 3.2 model is exposed via OpenRouter API and we require passing OpenRouter API Key to run.
There are different versions of the model supported:
-
smaller version (
11B
) is faster and cheaper, yet you can expect better quality of results using90B
version -
Regular
version is paid (and usually faster) API, whereasFree
is free for use for OpenRouter clients (state at 01.01.2025)
As for now, OpenRouter is the only provider for Llama 3.2 Vision model, but we will keep you posted if the state of the matter changes.
API Usage Charges
OpenRouter is external third party providing access to the model and incurring charges on the usage. Please check out pricing before use:
💡 Further reading and Acceptable Use Policy¶
Model license
Check out model license before use.
Click here for the original model card.
Usage of this model is subject to Meta's Acceptable Use Policy.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/llama_3_2_vision@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the Llama model. | ✅ |
output_structure |
Dict[str, str] |
Dictionary with structure of expected JSON response. | ❌ |
classes |
List[str] |
List of classes to be used. | ✅ |
api_key |
str |
Your Llama Vision API key (dependent on provider, ex: OpenRouter API key). | ✅ |
model_version |
str |
Model to be used. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response.. | ❌ |
temperature |
float |
Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are.. | ✅ |
max_concurrent_requests |
int |
Number of concurrent requests that can be executed by block when batch of input images provided. If not given - block defaults to value configured globally in Workflows Execution Engine. Please restrict if you hit limits.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Llama 3.2 Vision
in version v1
.
- inputs:
OpenAI
,VLM as Detector
,Keypoint Detection Model
,Circle Visualization
,Roboflow Dataset Upload
,Gaze Detection
,Roboflow Custom Metadata
,Depth Estimation
,SIFT
,Florence-2 Model
,Buffer
,Dimension Collapse
,Grid Visualization
,Dynamic Zone
,Instance Segmentation Model
,Color Visualization
,CSV Formatter
,Perspective Correction
,Model Monitoring Inference Aggregator
,Image Slicer
,OpenAI
,Model Comparison Visualization
,Clip Comparison
,Stitch Images
,Dynamic Crop
,Image Contours
,Webhook Sink
,Pixelate Visualization
,Llama 3.2 Vision
,Camera Calibration
,Reference Path Visualization
,Image Blur
,Local File Sink
,Blur Visualization
,OCR Model
,Ellipse Visualization
,Trace Visualization
,Corner Visualization
,Camera Focus
,Polygon Zone Visualization
,Google Gemini
,OpenAI
,Triangle Visualization
,Stability AI Inpainting
,Classification Label Visualization
,Single-Label Classification Model
,Bounding Box Visualization
,Size Measurement
,CogVLM
,Image Convert Grayscale
,Halo Visualization
,LMM
,Email Notification
,Polygon Visualization
,Absolute Static Crop
,Object Detection Model
,Slack Notification
,Dot Visualization
,Label Visualization
,Stability AI Outpainting
,Crop Visualization
,Cosine Similarity
,Google Vision OCR
,Stability AI Image Generation
,Image Threshold
,Stitch OCR Detections
,Image Preprocessing
,Identify Changes
,SIFT Comparison
,Mask Visualization
,Florence-2 Model
,Twilio SMS Notification
,Clip Comparison
,Roboflow Dataset Upload
,Line Counter Visualization
,VLM as Classifier
,Anthropic Claude
,Background Color Visualization
,LMM For Classification
,Image Slicer
,Keypoint Visualization
,Multi-Label Classification Model
,Relative Static Crop
- outputs:
YOLO-World Model
,OpenAI
,VLM as Detector
,Keypoint Detection Model
,Circle Visualization
,Roboflow Dataset Upload
,PTZ Tracking (ONVIF)
.md),Roboflow Custom Metadata
,Perception Encoder Embedding Model
,Florence-2 Model
,Cache Set
,Buffer
,Detections Stitch
,Grid Visualization
,Instance Segmentation Model
,Color Visualization
,Detections Consensus
,Object Detection Model
,Perspective Correction
,Path Deviation
,Model Monitoring Inference Aggregator
,OpenAI
,Keypoint Detection Model
,Model Comparison Visualization
,Clip Comparison
,Dynamic Crop
,Moondream2
,Webhook Sink
,Llama 3.2 Vision
,Line Counter
,Reference Path Visualization
,Local File Sink
,Time in Zone
,Image Blur
,Cache Get
,CLIP Embedding Model
,Ellipse Visualization
,Trace Visualization
,Corner Visualization
,Google Gemini
,Detections Classes Replacement
,Polygon Zone Visualization
,OpenAI
,Triangle Visualization
,Stability AI Inpainting
,Classification Label Visualization
,Bounding Box Visualization
,Distance Measurement
,CogVLM
,Halo Visualization
,LMM
,Email Notification
,Polygon Visualization
,Slack Notification
,Object Detection Model
,Dot Visualization
,Label Visualization
,Stability AI Outpainting
,Crop Visualization
,Google Vision OCR
,Stability AI Image Generation
,Image Threshold
,Pixel Color Count
,Image Preprocessing
,VLM as Classifier
,SIFT Comparison
,JSON Parser
,Mask Visualization
,Time in Zone
,Twilio SMS Notification
,Segment Anything 2 Model
,Florence-2 Model
,Clip Comparison
,Roboflow Dataset Upload
,Line Counter Visualization
,Path Deviation
,VLM as Classifier
,Anthropic Claude
,Instance Segmentation Model
,LMM For Classification
,Background Color Visualization
,Line Counter
,Keypoint Visualization
,Size Measurement
,VLM as Detector
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Llama 3.2 Vision
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..prompt
(string
): Text prompt to the Llama model.classes
(list_of_values
): List of classes to be used.api_key
(string
): Your Llama Vision API key (dependent on provider, ex: OpenRouter API key).model_version
(string
): Model to be used.temperature
(float
): Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are..
-
output
output
(Union[string
,language_model_output
]): String value ifstring
or LLM / VLM output iflanguage_model_output
.classes
(list_of_values
): List of values of any type.
Example JSON definition of step Llama 3.2 Vision
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/llama_3_2_vision@v1",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"output_structure": {
"my_key": "description"
},
"classes": [
"class-a",
"class-b"
],
"api_key": "xxx-xxx",
"model_version": "11B (Free) - OpenRouter",
"max_tokens": "<block_does_not_provide_example>",
"temperature": "<block_does_not_provide_example>",
"max_concurrent_requests": "<block_does_not_provide_example>"
}