LMM For Classification¶
Class: LMMForClassificationBlockV1
Source: inference.core.workflows.core_steps.models.foundation.lmm_classifier.v1.LMMForClassificationBlockV1
Classify an image into one or more categories using a Large Multimodal Model (LMM).
You can specify arbitrary classes to an LMMBlock.
The LLMBlock supports two LMMs:
- OpenAI's GPT-4 with Vision.
You need to provide your OpenAI API key to use the GPT-4 with Vision model.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/lmm_for_classification@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
lmm_type |
str |
Type of LMM to be used. | ✅ |
classes |
List[str] |
List of classes that LMM shall classify against. | ✅ |
lmm_config |
LMMConfig |
Configuration of LMM. | ❌ |
remote_api_key |
str |
Holds API key required to call LMM model - in current state of development, we require OpenAI key when lmm_type=gpt_4v .. |
✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to LMM For Classification
in version v1
.
- inputs:
LMM
,Depth Estimation
,Classification Label Visualization
,Camera Calibration
,Stitch OCR Detections
,LMM For Classification
,Clip Comparison
,CSV Formatter
,Instance Segmentation Model
,Stitch Images
,CogVLM
,Image Slicer
,Roboflow Dataset Upload
,Absolute Static Crop
,Twilio SMS Notification
,Florence-2 Model
,OpenAI
,Label Visualization
,Single-Label Classification Model
,Roboflow Dataset Upload
,Dimension Collapse
,Bounding Box Visualization
,Llama 3.2 Vision
,Model Comparison Visualization
,Slack Notification
,Object Detection Model
,VLM as Classifier
,Grid Visualization
,Dynamic Zone
,Image Convert Grayscale
,Halo Visualization
,Buffer
,Triangle Visualization
,Model Monitoring Inference Aggregator
,Keypoint Detection Model
,Reference Path Visualization
,Perspective Correction
,Dynamic Crop
,Camera Focus
,VLM as Detector
,Florence-2 Model
,Local File Sink
,OpenAI
,Google Vision OCR
,Stability AI Image Generation
,Ellipse Visualization
,Size Measurement
,SIFT
,Blur Visualization
,Circle Visualization
,Dot Visualization
,Image Blur
,Background Color Visualization
,Multi-Label Classification Model
,Color Visualization
,Pixelate Visualization
,Clip Comparison
,Google Gemini
,Stability AI Inpainting
,Polygon Zone Visualization
,Relative Static Crop
,OCR Model
,Keypoint Visualization
,Mask Visualization
,Image Preprocessing
,Line Counter Visualization
,Roboflow Custom Metadata
,Anthropic Claude
,Webhook Sink
,SIFT Comparison
,Trace Visualization
,Corner Visualization
,Polygon Visualization
,Crop Visualization
,Email Notification
,Image Contours
,Image Slicer
,Image Threshold
- outputs:
LMM
,Classification Label Visualization
,LMM For Classification
,Clip Comparison
,Line Counter
,Instance Segmentation Model
,CogVLM
,Roboflow Dataset Upload
,Distance Measurement
,Twilio SMS Notification
,Florence-2 Model
,OpenAI
,Label Visualization
,Path Deviation
,Roboflow Dataset Upload
,Detections Stitch
,Bounding Box Visualization
,Llama 3.2 Vision
,Model Comparison Visualization
,Slack Notification
,Pixel Color Count
,Halo Visualization
,Triangle Visualization
,Model Monitoring Inference Aggregator
,Time in Zone
,Reference Path Visualization
,Perspective Correction
,Dynamic Crop
,Time in Zone
,Cache Get
,Florence-2 Model
,Cache Set
,Local File Sink
,Path Deviation
,OpenAI
,Google Vision OCR
,Stability AI Image Generation
,Ellipse Visualization
,Size Measurement
,Circle Visualization
,Dot Visualization
,Image Blur
,CLIP Embedding Model
,Background Color Visualization
,Color Visualization
,Google Gemini
,Stability AI Inpainting
,Polygon Zone Visualization
,Keypoint Visualization
,Mask Visualization
,Image Preprocessing
,Line Counter Visualization
,Roboflow Custom Metadata
,Anthropic Claude
,Webhook Sink
,SIFT Comparison
,YOLO-World Model
,Trace Visualization
,Instance Segmentation Model
,Corner Visualization
,Polygon Visualization
,Segment Anything 2 Model
,Crop Visualization
,Email Notification
,Line Counter
,Image Threshold
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
LMM For Classification
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..lmm_type
(string
): Type of LMM to be used.classes
(list_of_values
): List of classes that LMM shall classify against.remote_api_key
(Union[string
,secret
]): Holds API key required to call LMM model - in current state of development, we require OpenAI key whenlmm_type=gpt_4v
..
-
output
raw_output
(string
): String value.top
(top_class
): String value representing top class predicted by classification model.parent_id
(parent_id
): Identifier of parent for step output.root_parent_id
(parent_id
): Identifier of parent for step output.image
(image_metadata
): Dictionary with image metadata required by supervision.prediction_type
(prediction_type
): String value with type of prediction.
Example JSON definition of step LMM For Classification
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/lmm_for_classification@v1",
"images": "$inputs.image",
"lmm_type": "gpt_4v",
"classes": [
"a",
"b"
],
"lmm_config": {
"gpt_image_detail": "low",
"gpt_model_version": "gpt-4o",
"max_tokens": 200
},
"remote_api_key": "xxx-xxx"
}