Mask Visualization¶
Class: MaskVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.mask.v1.MaskVisualizationBlockV1
Fill segmentation masks with semi-transparent color overlays, creating solid color fills that precisely follow the shape of detected objects from instance segmentation predictions.
How This Block Works¶
This block takes an image and instance segmentation predictions (with masks) and fills the mask regions with colored overlays. The block:
- Takes an image and instance segmentation predictions (with masks) as input
- Extracts segmentation masks for each detected object from the predictions
- Applies color styling to each mask based on the selected color palette, with colors assigned by class, index, or track ID
- Fills the mask regions with solid colors using Supervision's MaskAnnotator
- Blends the colored mask overlays with the original image using the specified opacity level
- Returns an annotated image where mask regions are filled with semi-transparent colors, while non-masked areas remain unchanged
The block fills the exact shape of each object's segmentation mask with colored overlays, creating solid color fills that precisely follow object boundaries. Unlike polygon visualization (which draws outlines) or bounding box visualizations (which use rectangular regions), mask visualization fills the entire mask area with color, providing clear visual indication of the segmented regions. The opacity parameter controls how transparent the mask overlay is, allowing you to see the original image details through the colored mask (lower opacity) or create more opaque fills (higher opacity) that better obscure background details. This block requires instance segmentation predictions with mask data, as it specifically works with segmentation masks to create precise, shape-following color fills.
Common Use Cases¶
- Instance Segmentation Visualization: Visualize instance segmentation results by filling mask regions with colors to clearly show segmented objects, validate segmentation quality, or highlight detected regions in analysis workflows
- Precise Shape-Following Overlays: Fill objects with colors that exactly match their segmented shapes, useful for applications requiring accurate region visualization such as medical imaging, quality control, or precise object identification
- Mask-Based Object Highlighting: Highlight segmented objects with colored overlays that follow exact object boundaries, providing clear visual distinction between different objects or object classes
- Segmentation Model Validation: Visualize segmentation predictions with colored mask fills to verify model performance, identify segmentation errors, or validate mask accuracy in model development and debugging workflows
- Medical and Scientific Imaging: Display segmented regions in medical imaging, microscopy, or scientific analysis applications where colored mask overlays help visualize tissue boundaries, cell regions, or measured areas
- Mask Quality Inspection: Use colored mask fills to inspect segmentation quality, verify mask boundaries, or identify areas where segmentation may need improvement in training data or model outputs
Connecting to Other Blocks¶
The annotated image from this block can be connected to:
- Other visualization blocks (e.g., Label Visualization, Polygon Visualization, Bounding Box Visualization) to combine mask fills with additional annotations (labels, outlines) for comprehensive visualization
- Data storage blocks (e.g., Local File Sink, CSV Formatter, Roboflow Dataset Upload) to save images with mask overlays for documentation, reporting, or analysis
- Webhook blocks to send visualized results with mask fills to external systems, APIs, or web applications for display in dashboards or monitoring tools
- Notification blocks (e.g., Email Notification, Slack Notification) to send annotated images with mask overlays as visual evidence in alerts or reports
- Video output blocks to create annotated video streams or recordings with mask fills for live monitoring, segmentation visualization, or post-processing analysis
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/mask_visualization@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
color_palette |
str |
Select a color palette for the visualised elements.. | ✅ |
palette_size |
int |
Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes.. | ✅ |
custom_colors |
List[str] |
Define a list of custom colors for bounding boxes in HEX format.. | ✅ |
color_axis |
str |
Choose how bounding box colors are assigned.. | ✅ |
opacity |
float |
Opacity of the mask overlay, ranging from 0.0 (fully transparent) to 1.0 (fully opaque). Controls the transparency of the colored mask fill. Lower values (e.g., 0.3-0.5) create semi-transparent overlays that allow original image details to show through, while higher values (e.g., 0.7-1.0) create more opaque fills that better obscure background details. Typical values range from 0.4 to 0.7 for balanced visualization where both the mask and underlying image are visible.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Mask Visualization in version v1.
- inputs:
Mask Visualization,Classification Label Visualization,Detections Consensus,Instance Segmentation Model,Webhook Sink,Multi-Label Classification Model,Email Notification,QR Code Generator,VLM As Detector,LMM,SAM 3,Detection Offset,Corner Visualization,Image Convert Grayscale,Stability AI Outpainting,Segment Anything 2 Model,Halo Visualization,JSON Parser,Object Detection Model,Trace Visualization,Google Vision OCR,Instance Segmentation Model,Clip Comparison,CSV Formatter,Text Display,Stitch Images,Google Gemini,Local File Sink,Slack Notification,VLM As Classifier,Roboflow Dataset Upload,PTZ Tracking (ONVIF).md),Color Visualization,Dot Visualization,Polygon Visualization,Anthropic Claude,Buffer,Contrast Equalization,Identify Changes,Detections Classes Replacement,Dimension Collapse,Velocity,SIFT Comparison,Halo Visualization,Florence-2 Model,Blur Visualization,Label Visualization,Twilio SMS/MMS Notification,Ellipse Visualization,OpenAI,SIFT,Model Monitoring Inference Aggregator,Single-Label Classification Model,Detections List Roll-Up,OpenAI,Image Threshold,Background Color Visualization,Model Comparison Visualization,Size Measurement,OpenAI,Polygon Visualization,Twilio SMS Notification,SAM 3,Bounding Box Visualization,OCR Model,Icon Visualization,Time in Zone,Google Gemini,Florence-2 Model,Roboflow Dataset Upload,Anthropic Claude,Dynamic Zone,Dynamic Crop,VLM As Detector,Google Gemini,Path Deviation,Image Blur,Line Counter,Stability AI Inpainting,Template Matching,Image Contours,Path Deviation,Morphological Transformation,Triangle Visualization,Bounding Rectangle,Detections Stitch,Relative Static Crop,Detections Filter,Camera Calibration,Grid Visualization,Detections Stabilizer,Camera Focus,Image Slicer,Detections Combine,LMM For Classification,Line Counter Visualization,Llama 3.2 Vision,Keypoint Detection Model,Distance Measurement,SIFT Comparison,Camera Focus,Time in Zone,Background Subtraction,Image Slicer,Circle Visualization,Seg Preview,Identify Outliers,Clip Comparison,Email Notification,Image Preprocessing,SAM 3,Depth Estimation,Time in Zone,Line Counter,CogVLM,Absolute Static Crop,Roboflow Custom Metadata,EasyOCR,Stitch OCR Detections,Perspective Correction,Anthropic Claude,Pixelate Visualization,Stability AI Image Generation,Reference Path Visualization,Keypoint Visualization,VLM As Classifier,Detection Event Log,Polygon Zone Visualization,Stitch OCR Detections,Crop Visualization,Pixel Color Count,Motion Detection,OpenAI,Detections Transformation - outputs:
Anthropic Claude,Mask Visualization,Classification Label Visualization,Instance Segmentation Model,Multi-Label Classification Model,Email Notification,Dynamic Crop,CLIP Embedding Model,VLM As Detector,VLM As Detector,Google Gemini,Multi-Label Classification Model,LMM,SAM 3,Image Blur,Corner Visualization,Image Convert Grayscale,Byte Tracker,Stability AI Outpainting,SmolVLM2,Segment Anything 2 Model,Halo Visualization,Stability AI Inpainting,Object Detection Model,Template Matching,Single-Label Classification Model,Image Contours,Trace Visualization,Google Vision OCR,Morphological Transformation,Triangle Visualization,Instance Segmentation Model,Clip Comparison,Detections Stitch,Relative Static Crop,Text Display,Stitch Images,Google Gemini,Camera Calibration,Detections Stabilizer,VLM As Classifier,Roboflow Dataset Upload,Camera Focus,Color Visualization,Dot Visualization,Image Slicer,Polygon Visualization,Object Detection Model,Anthropic Claude,LMM For Classification,Line Counter Visualization,Keypoint Detection Model,Buffer,Llama 3.2 Vision,Contrast Equalization,SIFT Comparison,Camera Focus,Perception Encoder Embedding Model,Dominant Color,Time in Zone,Background Subtraction,Image Slicer,Circle Visualization,Moondream2,Seg Preview,Halo Visualization,Florence-2 Model,Blur Visualization,Qwen3-VL,Twilio SMS/MMS Notification,Label Visualization,Barcode Detection,Clip Comparison,Ellipse Visualization,OpenAI,QR Code Detection,SIFT,Image Preprocessing,SAM 3,Single-Label Classification Model,OpenAI,Image Threshold,Background Color Visualization,Model Comparison Visualization,Depth Estimation,OpenAI,Motion Detection,Keypoint Detection Model,CogVLM,Absolute Static Crop,Gaze Detection,EasyOCR,Perspective Correction,Qwen2.5-VL,Anthropic Claude,Pixelate Visualization,Reference Path Visualization,Stability AI Image Generation,Keypoint Visualization,SAM 3,Polygon Visualization,VLM As Classifier,Bounding Box Visualization,Polygon Zone Visualization,OCR Model,YOLO-World Model,Icon Visualization,Crop Visualization,Pixel Color Count,Google Gemini,OpenAI,Florence-2 Model,Roboflow Dataset Upload
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Mask Visualization in version v1 has.
Bindings
-
input
image(image): The image to visualize on..copy_image(boolean): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions(Union[instance_segmentation_prediction,rle_instance_segmentation_prediction]): Instance segmentation predictions containing masks for detected objects. The block uses segmentation masks to create colored fills that precisely follow object boundaries. Requires instance segmentation model outputs with mask data..color_palette(string): Select a color palette for the visualised elements..palette_size(integer): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..custom_colors(list_of_values): Define a list of custom colors for bounding boxes in HEX format..color_axis(string): Choose how bounding box colors are assigned..opacity(float_zero_to_one): Opacity of the mask overlay, ranging from 0.0 (fully transparent) to 1.0 (fully opaque). Controls the transparency of the colored mask fill. Lower values (e.g., 0.3-0.5) create semi-transparent overlays that allow original image details to show through, while higher values (e.g., 0.7-1.0) create more opaque fills that better obscure background details. Typical values range from 0.4 to 0.7 for balanced visualization where both the mask and underlying image are visible..
-
output
image(image): Image in workflows.
Example JSON definition of step Mask Visualization in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/mask_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.instance_segmentation_model.predictions",
"color_palette": "DEFAULT",
"palette_size": 10,
"custom_colors": [
"#FF0000",
"#00FF00",
"#0000FF"
],
"color_axis": "CLASS",
"opacity": 0.5
}