Mask Visualization¶
Class: MaskVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.mask.v1.MaskVisualizationBlockV1
The MaskVisualization
block uses a detected polygon
from an instance segmentation to draw a mask using
sv.MaskAnnotator
.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/mask_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
color_palette |
str |
Select a color palette for the visualised elements.. | ✅ |
palette_size |
int |
Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes.. | ✅ |
custom_colors |
List[str] |
Define a list of custom colors for bounding boxes in HEX format.. | ✅ |
color_axis |
str |
Choose how bounding box colors are assigned.. | ✅ |
opacity |
float |
Transparency of the Mask overlay.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Mask Visualization
in version v1
.
- inputs:
Color Visualization
,SIFT Comparison
,VLM as Detector
,Identify Outliers
,Multi-Label Classification Model
,Identify Changes
,Stitch OCR Detections
,Instance Segmentation Model
,Stitch Images
,Image Slicer
,OpenAI
,Detections Transformation
,Dimension Collapse
,SIFT
,LMM
,Circle Visualization
,Detections Stabilizer
,Slack Notification
,Camera Calibration
,Reference Path Visualization
,Local File Sink
,Velocity
,Florence-2 Model
,Polygon Visualization
,Distance Measurement
,Stability AI Image Generation
,Roboflow Dataset Upload
,Grid Visualization
,JSON Parser
,VLM as Classifier
,Path Deviation
,OpenAI
,Bounding Box Visualization
,Roboflow Dataset Upload
,Email Notification
,Instance Segmentation Model
,VLM as Classifier
,Clip Comparison
,Model Comparison Visualization
,Clip Comparison
,Blur Visualization
,Model Monitoring Inference Aggregator
,Path Deviation
,Florence-2 Model
,Segment Anything 2 Model
,Size Measurement
,Dynamic Zone
,Single-Label Classification Model
,Ellipse Visualization
,Crop Visualization
,Relative Static Crop
,Absolute Static Crop
,Keypoint Visualization
,Trace Visualization
,CSV Formatter
,Dynamic Crop
,Bounding Rectangle
,Time in Zone
,OpenAI
,Image Blur
,Triangle Visualization
,Llama 3.2 Vision
,Line Counter
,OCR Model
,SIFT Comparison
,Detections Classes Replacement
,Pixelate Visualization
,Webhook Sink
,Image Threshold
,Line Counter Visualization
,Dot Visualization
,Label Visualization
,Corner Visualization
,Twilio SMS Notification
,Time in Zone
,Perspective Correction
,Detections Filter
,Image Convert Grayscale
,Detection Offset
,Image Contours
,Mask Visualization
,Polygon Zone Visualization
,Roboflow Custom Metadata
,Classification Label Visualization
,Image Slicer
,CogVLM
,LMM For Classification
,Google Gemini
,Line Counter
,Detections Consensus
,Object Detection Model
,Buffer
,Detections Stitch
,Background Color Visualization
,Template Matching
,Stability AI Inpainting
,VLM as Detector
,Camera Focus
,Anthropic Claude
,Google Vision OCR
,Image Preprocessing
,Keypoint Detection Model
,Halo Visualization
,Depth Estimation
,Pixel Color Count
- outputs:
VLM as Detector
,SIFT Comparison
,Color Visualization
,Multi-Label Classification Model
,Instance Segmentation Model
,Stitch Images
,Image Slicer
,OpenAI
,SIFT
,LMM
,Circle Visualization
,Detections Stabilizer
,Camera Calibration
,Reference Path Visualization
,Multi-Label Classification Model
,Florence-2 Model
,Polygon Visualization
,QR Code Detection
,Roboflow Dataset Upload
,VLM as Classifier
,Stability AI Image Generation
,OpenAI
,Bounding Box Visualization
,Roboflow Dataset Upload
,Single-Label Classification Model
,VLM as Classifier
,Instance Segmentation Model
,Clip Comparison
,Model Comparison Visualization
,Clip Comparison
,Blur Visualization
,Moondream2
,Florence-2 Model
,Segment Anything 2 Model
,Single-Label Classification Model
,Gaze Detection
,Barcode Detection
,Keypoint Visualization
,Ellipse Visualization
,Crop Visualization
,Trace Visualization
,Byte Tracker
,Relative Static Crop
,Absolute Static Crop
,Dynamic Crop
,OpenAI
,Triangle Visualization
,Image Blur
,Keypoint Detection Model
,Llama 3.2 Vision
,Object Detection Model
,OCR Model
,SmolVLM2
,CLIP Embedding Model
,Pixelate Visualization
,Image Threshold
,Line Counter Visualization
,Label Visualization
,Time in Zone
,Dot Visualization
,Corner Visualization
,Perspective Correction
,Image Convert Grayscale
,Image Contours
,Mask Visualization
,Polygon Zone Visualization
,Dominant Color
,Classification Label Visualization
,Image Slicer
,LMM For Classification
,CogVLM
,Google Gemini
,Object Detection Model
,Buffer
,Detections Stitch
,Background Color Visualization
,Template Matching
,Stability AI Inpainting
,VLM as Detector
,Camera Focus
,Anthropic Claude
,Google Vision OCR
,Image Preprocessing
,YOLO-World Model
,Keypoint Detection Model
,Halo Visualization
,Qwen2.5-VL
,Depth Estimation
,Pixel Color Count
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Mask Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions
(instance_segmentation_prediction
): Predictions.color_palette
(string
): Select a color palette for the visualised elements..palette_size
(integer
): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..custom_colors
(list_of_values
): Define a list of custom colors for bounding boxes in HEX format..color_axis
(string
): Choose how bounding box colors are assigned..opacity
(float_zero_to_one
): Transparency of the Mask overlay..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Mask Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/mask_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.instance_segmentation_model.predictions",
"color_palette": "DEFAULT",
"palette_size": 10,
"custom_colors": [
"#FF0000",
"#00FF00",
"#0000FF"
],
"color_axis": "CLASS",
"opacity": 0.5
}