Mask Visualization¶
Class: MaskVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.mask.v1.MaskVisualizationBlockV1
The MaskVisualization
block uses a detected polygon
from an instance segmentation to draw a mask using
sv.MaskAnnotator
.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/mask_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
color_palette |
str |
Select a color palette for the visualised elements.. | ✅ |
palette_size |
int |
Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes.. | ✅ |
custom_colors |
List[str] |
Define a list of custom colors for bounding boxes in HEX format.. | ✅ |
color_axis |
str |
Choose how bounding box colors are assigned.. | ✅ |
opacity |
float |
Transparency of the Mask overlay.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Mask Visualization
in version v1
.
- inputs:
Stitch Images
,Pixelate Visualization
,Path Deviation
,Multi-Label Classification Model
,LMM For Classification
,Line Counter
,Instance Segmentation Model
,Blur Visualization
,Single-Label Classification Model
,Mask Visualization
,OCR Model
,Object Detection Model
,SIFT
,Line Counter
,Detections Filter
,Model Monitoring Inference Aggregator
,Polygon Visualization
,Halo Visualization
,VLM as Detector
,Grid Visualization
,Google Vision OCR
,Model Comparison Visualization
,Email Notification
,Camera Focus
,CogVLM
,Image Threshold
,Keypoint Visualization
,Detections Classes Replacement
,Template Matching
,Image Preprocessing
,Detection Offset
,Roboflow Dataset Upload
,Slack Notification
,Stitch OCR Detections
,Identify Changes
,Relative Static Crop
,Background Color Visualization
,Clip Comparison
,Bounding Box Visualization
,Ellipse Visualization
,Image Contours
,Label Visualization
,Classification Label Visualization
,Line Counter Visualization
,LMM
,Stability AI Inpainting
,Reference Path Visualization
,VLM as Detector
,Dynamic Crop
,Triangle Visualization
,Bounding Rectangle
,Absolute Static Crop
,Distance Measurement
,Time in Zone
,Detections Stitch
,Florence-2 Model
,SIFT Comparison
,Keypoint Detection Model
,Corner Visualization
,Perspective Correction
,Local File Sink
,Polygon Zone Visualization
,VLM as Classifier
,Dimension Collapse
,Image Slicer
,Trace Visualization
,Twilio SMS Notification
,Detections Consensus
,Webhook Sink
,Roboflow Custom Metadata
,OpenAI
,Size Measurement
,Crop Visualization
,Instance Segmentation Model
,Buffer
,Roboflow Dataset Upload
,VLM as Classifier
,Clip Comparison
,Anthropic Claude
,SIFT Comparison
,Image Blur
,Circle Visualization
,Image Convert Grayscale
,Dot Visualization
,Google Gemini
,Dynamic Zone
,Segment Anything 2 Model
,JSON Parser
,Identify Outliers
,Time in Zone
,Florence-2 Model
,Detections Stabilizer
,Path Deviation
,OpenAI
,Color Visualization
,Pixel Color Count
,CSV Formatter
,Llama 3.2 Vision
,Detections Transformation
- outputs:
Multi-Label Classification Model
,Pixelate Visualization
,Stitch Images
,LMM For Classification
,Keypoint Detection Model
,Gaze Detection
,Instance Segmentation Model
,CLIP Embedding Model
,Blur Visualization
,OCR Model
,Mask Visualization
,Object Detection Model
,Single-Label Classification Model
,SIFT
,YOLO-World Model
,Polygon Visualization
,Halo Visualization
,VLM as Detector
,Google Vision OCR
,Model Comparison Visualization
,Camera Focus
,CogVLM
,Byte Tracker
,Image Threshold
,Keypoint Visualization
,Template Matching
,Image Preprocessing
,Roboflow Dataset Upload
,Relative Static Crop
,Background Color Visualization
,Clip Comparison
,Bounding Box Visualization
,Image Contours
,Label Visualization
,Line Counter Visualization
,Classification Label Visualization
,Ellipse Visualization
,LMM
,Reference Path Visualization
,Stability AI Inpainting
,VLM as Detector
,Dynamic Crop
,Dominant Color
,Triangle Visualization
,Absolute Static Crop
,Object Detection Model
,Florence-2 Model
,Detections Stitch
,Barcode Detection
,SIFT Comparison
,Keypoint Detection Model
,Corner Visualization
,Perspective Correction
,Polygon Zone Visualization
,VLM as Classifier
,Image Slicer
,Trace Visualization
,OpenAI
,Crop Visualization
,Instance Segmentation Model
,Buffer
,Roboflow Dataset Upload
,Clip Comparison
,VLM as Classifier
,Anthropic Claude
,Image Blur
,Dot Visualization
,Image Convert Grayscale
,Circle Visualization
,Google Gemini
,QR Code Detection
,Segment Anything 2 Model
,Single-Label Classification Model
,Florence-2 Model
,Time in Zone
,Detections Stabilizer
,OpenAI
,Color Visualization
,Pixel Color Count
,Multi-Label Classification Model
,Llama 3.2 Vision
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Mask Visualization
in version v1
has.
Bindings
-
input
image
(image
): Select the input image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions
(instance_segmentation_prediction
): Predictions.color_palette
(string
): Select a color palette for the visualised elements..palette_size
(integer
): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..custom_colors
(list_of_values
): Define a list of custom colors for bounding boxes in HEX format..color_axis
(string
): Choose how bounding box colors are assigned..opacity
(float_zero_to_one
): Transparency of the Mask overlay..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Mask Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/mask_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.instance_segmentation_model.predictions",
"color_palette": "DEFAULT",
"palette_size": 10,
"custom_colors": [
"#FF0000",
"#00FF00",
"#0000FF"
],
"color_axis": "CLASS",
"opacity": 0.5
}