Mask Visualization¶
Class: MaskVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.mask.v1.MaskVisualizationBlockV1
The MaskVisualization
block uses a detected polygon
from an instance segmentation to draw a mask using
sv.MaskAnnotator
.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/mask_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
color_palette |
str |
Select a color palette for the visualised elements.. | ✅ |
palette_size |
int |
Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes.. | ✅ |
custom_colors |
List[str] |
Define a list of custom colors for bounding boxes in HEX format.. | ✅ |
color_axis |
str |
Choose how bounding box colors are assigned.. | ✅ |
opacity |
float |
Transparency of the Mask overlay.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Mask Visualization
in version v1
.
- inputs:
Path Deviation
,Background Color Visualization
,VLM as Classifier
,Detections Filter
,Trace Visualization
,Time in Zone
,Google Vision OCR
,OpenAI
,Dot Visualization
,Classification Label Visualization
,Stitch Images
,Model Monitoring Inference Aggregator
,Line Counter
,Line Counter Visualization
,SIFT Comparison
,Email Notification
,Anthropic Claude
,Pixel Color Count
,LMM
,Dimension Collapse
,Multi-Label Classification Model
,Model Comparison Visualization
,Line Counter
,OCR Model
,Absolute Static Crop
,Stability AI Image Generation
,Image Contours
,Dynamic Crop
,CSV Formatter
,LMM For Classification
,JSON Parser
,Image Slicer
,CogVLM
,Object Detection Model
,Image Preprocessing
,Circle Visualization
,Distance Measurement
,Detection Offset
,Florence-2 Model
,VLM as Detector
,Keypoint Detection Model
,PTZ Tracking (ONVIF)
.md),Relative Static Crop
,Image Slicer
,Slack Notification
,Label Visualization
,Roboflow Dataset Upload
,Image Threshold
,Reference Path Visualization
,Depth Estimation
,Bounding Box Visualization
,Dynamic Zone
,Icon Visualization
,Roboflow Custom Metadata
,Local File Sink
,Detections Transformation
,Polygon Visualization
,Florence-2 Model
,Path Deviation
,Identify Outliers
,VLM as Classifier
,Ellipse Visualization
,Pixelate Visualization
,SIFT
,Buffer
,Grid Visualization
,Camera Focus
,Instance Segmentation Model
,Detections Consensus
,Clip Comparison
,Single-Label Classification Model
,Bounding Rectangle
,Image Blur
,Detections Classes Replacement
,Keypoint Visualization
,Polygon Zone Visualization
,Template Matching
,Size Measurement
,Crop Visualization
,Corner Visualization
,Triangle Visualization
,Detections Stabilizer
,Stitch OCR Detections
,Twilio SMS Notification
,Clip Comparison
,Stability AI Inpainting
,Webhook Sink
,OpenAI
,QR Code Generator
,OpenAI
,Stability AI Outpainting
,Camera Calibration
,Detections Stitch
,Image Convert Grayscale
,Time in Zone
,Llama 3.2 Vision
,SIFT Comparison
,Roboflow Dataset Upload
,Segment Anything 2 Model
,Blur Visualization
,Velocity
,VLM as Detector
,Identify Changes
,Color Visualization
,Instance Segmentation Model
,Halo Visualization
,Google Gemini
,Perspective Correction
,Mask Visualization
,Time in Zone
- outputs:
Background Color Visualization
,Perception Encoder Embedding Model
,VLM as Classifier
,Trace Visualization
,Google Vision OCR
,OpenAI
,Dot Visualization
,Classification Label Visualization
,Stitch Images
,Line Counter Visualization
,SIFT Comparison
,Anthropic Claude
,Pixel Color Count
,LMM
,Qwen2.5-VL
,Multi-Label Classification Model
,Model Comparison Visualization
,OCR Model
,Stability AI Image Generation
,Object Detection Model
,Absolute Static Crop
,Image Contours
,Dynamic Crop
,LMM For Classification
,Image Slicer
,Gaze Detection
,CogVLM
,QR Code Detection
,Object Detection Model
,Image Preprocessing
,Circle Visualization
,CLIP Embedding Model
,Florence-2 Model
,VLM as Detector
,Keypoint Detection Model
,Keypoint Detection Model
,Relative Static Crop
,Image Slicer
,YOLO-World Model
,Moondream2
,Label Visualization
,Roboflow Dataset Upload
,Image Threshold
,Reference Path Visualization
,Depth Estimation
,Bounding Box Visualization
,Icon Visualization
,Polygon Visualization
,Florence-2 Model
,Byte Tracker
,Dominant Color
,VLM as Classifier
,Buffer
,Pixelate Visualization
,SIFT
,Ellipse Visualization
,Camera Focus
,Instance Segmentation Model
,Clip Comparison
,Single-Label Classification Model
,Image Blur
,Keypoint Visualization
,Polygon Zone Visualization
,Template Matching
,Crop Visualization
,Corner Visualization
,Detections Stabilizer
,Triangle Visualization
,Clip Comparison
,Stability AI Inpainting
,OpenAI
,OpenAI
,Stability AI Outpainting
,Camera Calibration
,Detections Stitch
,Multi-Label Classification Model
,Image Convert Grayscale
,Single-Label Classification Model
,Llama 3.2 Vision
,Roboflow Dataset Upload
,Segment Anything 2 Model
,Blur Visualization
,VLM as Detector
,Color Visualization
,Instance Segmentation Model
,SmolVLM2
,Barcode Detection
,Halo Visualization
,Google Gemini
,Mask Visualization
,Perspective Correction
,Time in Zone
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Mask Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions
(instance_segmentation_prediction
): Predictions.color_palette
(string
): Select a color palette for the visualised elements..palette_size
(integer
): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..custom_colors
(list_of_values
): Define a list of custom colors for bounding boxes in HEX format..color_axis
(string
): Choose how bounding box colors are assigned..opacity
(float_zero_to_one
): Transparency of the Mask overlay..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Mask Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/mask_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.instance_segmentation_model.predictions",
"color_palette": "DEFAULT",
"palette_size": 10,
"custom_colors": [
"#FF0000",
"#00FF00",
"#0000FF"
],
"color_axis": "CLASS",
"opacity": 0.5
}