Moondream2¶
Class: Moondream2BlockV1
Source: inference.core.workflows.core_steps.models.foundation.moondream2.v1.Moondream2BlockV1
This workflow block runs Moondream2, a multimodal vision-language model. You can use this block to run zero-shot object detection.
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/moondream2@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
prompt |
str |
Optional text prompt to provide additional context to Moondream2.. | ✅ |
model_version |
str |
The Moondream2 model to be used for inference.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Moondream2 in version v1.
- inputs:
Local File Sink,Dot Visualization,Stability AI Inpainting,Reference Path Visualization,Object Detection Model,VLM as Classifier,Stability AI Outpainting,Multi-Label Classification Model,QR Code Generator,Line Counter Visualization,Ellipse Visualization,Roboflow Custom Metadata,Background Color Visualization,Polygon Zone Visualization,CSV Formatter,Roboflow Dataset Upload,Contrast Equalization,EasyOCR,Object Detection Model,Image Slicer,Google Gemini,Florence-2 Model,Google Vision OCR,Image Threshold,SIFT Comparison,Image Preprocessing,Icon Visualization,OCR Model,Roboflow Dataset Upload,Absolute Static Crop,Pixelate Visualization,Image Blur,Perspective Correction,Relative Static Crop,Florence-2 Model,VLM as Detector,Single-Label Classification Model,LMM For Classification,Llama 3.2 Vision,Clip Comparison,LMM,SIFT,Halo Visualization,Multi-Label Classification Model,Model Monitoring Inference Aggregator,Image Convert Grayscale,Anthropic Claude,Triangle Visualization,Depth Estimation,Image Contours,Mask Visualization,Keypoint Detection Model,Image Slicer,CogVLM,Model Comparison Visualization,Stitch OCR Detections,Twilio SMS Notification,Single-Label Classification Model,Polygon Visualization,Corner Visualization,Crop Visualization,Stitch Images,Blur Visualization,Dynamic Crop,Keypoint Detection Model,Instance Segmentation Model,Camera Focus,OpenAI,Email Notification,Color Visualization,Classification Label Visualization,Label Visualization,OpenAI,Circle Visualization,Keypoint Visualization,Trace Visualization,Camera Calibration,Instance Segmentation Model,Morphological Transformation,OpenAI,Bounding Box Visualization,Grid Visualization,Slack Notification,Webhook Sink,Stability AI Image Generation - outputs:
PTZ Tracking (ONVIF).md),Detections Stitch,Dot Visualization,Time in Zone,Line Counter,Model Monitoring Inference Aggregator,Detections Merge,Distance Measurement,Florence-2 Model,Path Deviation,Time in Zone,Triangle Visualization,Detections Classes Replacement,Size Measurement,Ellipse Visualization,Model Comparison Visualization,Stitch OCR Detections,Roboflow Custom Metadata,Time in Zone,Detections Combine,Background Color Visualization,Corner Visualization,Crop Visualization,Roboflow Dataset Upload,Blur Visualization,Dynamic Crop,Byte Tracker,Overlap Filter,Detections Transformation,Detections Stabilizer,Segment Anything 2 Model,Byte Tracker,Color Visualization,Florence-2 Model,Velocity,Label Visualization,Circle Visualization,Detections Consensus,Trace Visualization,Icon Visualization,Roboflow Dataset Upload,Bounding Box Visualization,Detections Filter,Detection Offset,Path Deviation,Pixelate Visualization,Perspective Correction,Line Counter,Byte Tracker
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Moondream2 in version v1 has.
Bindings
-
input
images(image): The image to infer on..prompt(string): Optional text prompt to provide additional context to Moondream2..model_version(roboflow_model_id): The Moondream2 model to be used for inference..
-
output
predictions(object_detection_prediction): Prediction with detected bounding boxes in form of sv.Detections(...) object.
Example JSON definition of step Moondream2 in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/moondream2@v1",
"images": "$inputs.image",
"prompt": "my prompt",
"model_version": "moondream2/moondream2_2b_jul24"
}