Multi-Label Classification Model¶
v2¶
Class: RoboflowMultiLabelClassificationModelBlockV2
(there are multiple versions of this block)
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Run inference on a multi-label classification model hosted on or uploaded to Roboflow.
You can query any model that is private to your account, or any public model available on Roboflow Universe.
You will need to set your Roboflow API key in your Inference environment to use this block. To learn more about setting your Roboflow API key, refer to the Inference documentation.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/roboflow_multi_label_classification_model@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
model_id |
str |
Roboflow model identifier.. | ✅ |
confidence |
float |
Confidence threshold for predictions.. | ✅ |
disable_active_learning |
bool |
Boolean flag to disable project-level active learning for this block.. | ✅ |
active_learning_target_dataset |
str |
Target dataset for active learning, if enabled.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Multi-Label Classification Model
in version v2
.
- inputs:
Background Color Visualization
,Detections Consensus
,Circle Visualization
,Polygon Visualization
,Polygon Zone Visualization
,Stability AI Outpainting
,Grid Visualization
,Image Slicer
,Reference Path Visualization
,Roboflow Custom Metadata
,Single-Label Classification Model
,Identify Changes
,Color Visualization
,Dynamic Crop
,Image Contours
,VLM as Detector
,Blur Visualization
,Model Monitoring Inference Aggregator
,Stability AI Inpainting
,SIFT Comparison
,Relative Static Crop
,Bounding Box Visualization
,Absolute Static Crop
,Identify Outliers
,Multi-Label Classification Model
,Trace Visualization
,Halo Visualization
,Classification Label Visualization
,Crop Visualization
,Camera Calibration
,Stitch Images
,Image Convert Grayscale
,Camera Focus
,Line Counter Visualization
,Email Notification
,Corner Visualization
,Ellipse Visualization
,VLM as Classifier
,JSON Parser
,Mask Visualization
,Roboflow Dataset Upload
,Perspective Correction
,Dynamic Zone
,Object Detection Model
,Triangle Visualization
,Model Comparison Visualization
,Image Blur
,Dot Visualization
,Stability AI Image Generation
,Depth Estimation
,Instance Segmentation Model
,Keypoint Visualization
,Clip Comparison
,VLM as Classifier
,Webhook Sink
,Twilio SMS Notification
,VLM as Detector
,Image Threshold
,Image Preprocessing
,Roboflow Dataset Upload
,SIFT
,SIFT Comparison
,Local File Sink
,Label Visualization
,PTZ Tracking (ONVIF)
.md),Image Slicer
,Pixelate Visualization
,Keypoint Detection Model
,Slack Notification
- outputs:
Roboflow Custom Metadata
,Single-Label Classification Model
,Roboflow Dataset Upload
,Moondream2
,Multi-Label Classification Model
,Object Detection Model
,Single-Label Classification Model
,Object Detection Model
,Qwen2.5-VL
,Instance Segmentation Model
,Model Monitoring Inference Aggregator
,Detections Classes Replacement
,Keypoint Detection Model
,Webhook Sink
,Instance Segmentation Model
,Roboflow Dataset Upload
,SmolVLM2
,Multi-Label Classification Model
,Classification Label Visualization
,Keypoint Detection Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Multi-Label Classification Model
in version v2
has.
Bindings
-
input
images
(image
): The image to infer on..model_id
(roboflow_model_id
): Roboflow model identifier..confidence
(float_zero_to_one
): Confidence threshold for predictions..disable_active_learning
(boolean
): Boolean flag to disable project-level active learning for this block..active_learning_target_dataset
(roboflow_project
): Target dataset for active learning, if enabled..
-
output
predictions
(classification_prediction
): Predictions from classifier.inference_id
(inference_id
): Inference identifier.model_id
(roboflow_model_id
): Roboflow model id.
Example JSON definition of step Multi-Label Classification Model
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/roboflow_multi_label_classification_model@v2",
"images": "$inputs.image",
"model_id": "my_project/3",
"confidence": 0.3,
"disable_active_learning": true,
"active_learning_target_dataset": "my_project"
}
v1¶
Class: RoboflowMultiLabelClassificationModelBlockV1
(there are multiple versions of this block)
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Run inference on a multi-label classification model hosted on or uploaded to Roboflow.
You can query any model that is private to your account, or any public model available on Roboflow Universe.
You will need to set your Roboflow API key in your Inference environment to use this block. To learn more about setting your Roboflow API key, refer to the Inference documentation.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/roboflow_multi_label_classification_model@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
model_id |
str |
Roboflow model identifier.. | ✅ |
confidence |
float |
Confidence threshold for predictions.. | ✅ |
disable_active_learning |
bool |
Boolean flag to disable project-level active learning for this block.. | ✅ |
active_learning_target_dataset |
str |
Target dataset for active learning, if enabled.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Multi-Label Classification Model
in version v1
.
- inputs:
Background Color Visualization
,Detections Consensus
,Circle Visualization
,Polygon Visualization
,Polygon Zone Visualization
,Stability AI Outpainting
,Grid Visualization
,Image Slicer
,Reference Path Visualization
,Roboflow Custom Metadata
,Single-Label Classification Model
,Identify Changes
,Color Visualization
,Dynamic Crop
,Image Contours
,VLM as Detector
,Blur Visualization
,Model Monitoring Inference Aggregator
,Stability AI Inpainting
,SIFT Comparison
,Relative Static Crop
,Bounding Box Visualization
,Absolute Static Crop
,Identify Outliers
,Multi-Label Classification Model
,Trace Visualization
,Halo Visualization
,Classification Label Visualization
,Crop Visualization
,Camera Calibration
,Stitch Images
,Image Convert Grayscale
,Camera Focus
,Line Counter Visualization
,Email Notification
,Corner Visualization
,Ellipse Visualization
,VLM as Classifier
,JSON Parser
,Mask Visualization
,Roboflow Dataset Upload
,Perspective Correction
,Dynamic Zone
,Object Detection Model
,Triangle Visualization
,Model Comparison Visualization
,Image Blur
,Dot Visualization
,Stability AI Image Generation
,Depth Estimation
,Instance Segmentation Model
,Keypoint Visualization
,Clip Comparison
,VLM as Classifier
,Webhook Sink
,Twilio SMS Notification
,VLM as Detector
,Image Threshold
,Image Preprocessing
,Roboflow Dataset Upload
,SIFT
,SIFT Comparison
,Local File Sink
,Label Visualization
,PTZ Tracking (ONVIF)
.md),Image Slicer
,Pixelate Visualization
,Keypoint Detection Model
,Slack Notification
- outputs:
Circle Visualization
,Polygon Zone Visualization
,Reference Path Visualization
,Dynamic Crop
,Size Measurement
,Distance Measurement
,Perception Encoder Embedding Model
,Cache Set
,Stability AI Inpainting
,SIFT Comparison
,OpenAI
,LMM For Classification
,Instance Segmentation Model
,Trace Visualization
,Classification Label Visualization
,Crop Visualization
,Segment Anything 2 Model
,Line Counter Visualization
,Email Notification
,Corner Visualization
,Time in Zone
,CLIP Embedding Model
,Google Vision OCR
,Path Deviation
,Line Counter
,Moondream2
,Perspective Correction
,Triangle Visualization
,Path Deviation
,Image Blur
,Pixel Color Count
,Cache Get
,Clip Comparison
,Detections Classes Replacement
,Webhook Sink
,Twilio SMS Notification
,Image Preprocessing
,Anthropic Claude
,Background Color Visualization
,Roboflow Custom Metadata
,Polygon Visualization
,Stability AI Outpainting
,CogVLM
,Color Visualization
,Google Gemini
,Model Monitoring Inference Aggregator
,Bounding Box Visualization
,Llama 3.2 Vision
,YOLO-World Model
,Halo Visualization
,Florence-2 Model
,OpenAI
,Ellipse Visualization
,OpenAI
,Mask Visualization
,Roboflow Dataset Upload
,Model Comparison Visualization
,Line Counter
,Dot Visualization
,Stability AI Image Generation
,Instance Segmentation Model
,Keypoint Visualization
,LMM
,Time in Zone
,Roboflow Dataset Upload
,Florence-2 Model
,Local File Sink
,Image Threshold
,PTZ Tracking (ONVIF)
.md),Label Visualization
,Detections Stitch
,Slack Notification
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Multi-Label Classification Model
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..model_id
(roboflow_model_id
): Roboflow model identifier..confidence
(float_zero_to_one
): Confidence threshold for predictions..disable_active_learning
(boolean
): Boolean flag to disable project-level active learning for this block..active_learning_target_dataset
(roboflow_project
): Target dataset for active learning, if enabled..
-
output
predictions
(classification_prediction
): Predictions from classifier.inference_id
(string
): String value.
Example JSON definition of step Multi-Label Classification Model
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/roboflow_multi_label_classification_model@v1",
"images": "$inputs.image",
"model_id": "my_project/3",
"confidence": 0.3,
"disable_active_learning": true,
"active_learning_target_dataset": "my_project"
}