OCR Model¶
Class: OCRModelBlockV1
Source: inference.core.workflows.core_steps.models.foundation.ocr.v1.OCRModelBlockV1
Retrieve the characters in an image using Optical Character Recognition (OCR).
This block returns the text within an image.
You may want to use this block in combination with a detections-based block (i.e. ObjectDetectionBlock). An object detection model could isolate specific regions from an image (i.e. a shipping container ID in a logistics use case) for further processing. You can then use a DynamicCropBlock to crop the region of interest before running OCR.
Using a detections model then cropping detections allows you to isolate your analysis on particular regions of an image.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/ocr_model@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Unique name of step in workflows. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to OCR Model
in version v1
.
- inputs:
Keypoint Visualization
,Image Contours
,Circle Visualization
,Image Threshold
,Absolute Static Crop
,Image Slicer
,Perspective Correction
,Color Visualization
,Mask Visualization
,Reference Path Visualization
,Stitch Images
,Image Blur
,Blur Visualization
,Pixelate Visualization
,Relative Static Crop
,Dot Visualization
,Image Slicer
,Stability AI Inpainting
,SIFT Comparison
,Classification Label Visualization
,Icon Visualization
,Polygon Zone Visualization
,Depth Estimation
,Polygon Visualization
,Stability AI Image Generation
,Dynamic Crop
,Grid Visualization
,Crop Visualization
,Ellipse Visualization
,Stability AI Outpainting
,Trace Visualization
,Bounding Box Visualization
,Camera Calibration
,Image Preprocessing
,Image Convert Grayscale
,Label Visualization
,Corner Visualization
,SIFT
,QR Code Generator
,Background Color Visualization
,Camera Focus
,Model Comparison Visualization
,Triangle Visualization
,Halo Visualization
,Line Counter Visualization
- outputs:
Keypoint Visualization
,Google Gemini
,Circle Visualization
,Path Deviation
,Image Threshold
,Perspective Correction
,Color Visualization
,Instance Segmentation Model
,Reference Path Visualization
,Image Blur
,Florence-2 Model
,PTZ Tracking (ONVIF)
.md),Local File Sink
,Halo Visualization
,Clip Comparison
,Stability AI Inpainting
,SIFT Comparison
,Cache Get
,Icon Visualization
,Time in Zone
,Roboflow Custom Metadata
,Polygon Zone Visualization
,Instance Segmentation Model
,Stability AI Image Generation
,Dynamic Crop
,Crop Visualization
,Time in Zone
,Segment Anything 2 Model
,Perception Encoder Embedding Model
,Pixel Color Count
,QR Code Generator
,Size Measurement
,Model Comparison Visualization
,Twilio SMS Notification
,CLIP Embedding Model
,Llama 3.2 Vision
,Line Counter Visualization
,Triangle Visualization
,Email Notification
,LMM
,Roboflow Dataset Upload
,Time in Zone
,Path Deviation
,Mask Visualization
,Webhook Sink
,Slack Notification
,Cache Set
,Dot Visualization
,Roboflow Dataset Upload
,Detections Classes Replacement
,YOLO-World Model
,Classification Label Visualization
,OpenAI
,Model Monitoring Inference Aggregator
,Polygon Visualization
,OpenAI
,LMM For Classification
,Trace Visualization
,Stability AI Outpainting
,Line Counter
,Bounding Box Visualization
,Distance Measurement
,Moondream2
,Image Preprocessing
,Google Vision OCR
,Label Visualization
,Line Counter
,CogVLM
,Corner Visualization
,Detections Stitch
,Background Color Visualization
,Florence-2 Model
,Ellipse Visualization
,OpenAI
,Anthropic Claude
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
OCR Model
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..
-
output
result
(string
): String value.parent_id
(parent_id
): Identifier of parent for step output.root_parent_id
(parent_id
): Identifier of parent for step output.prediction_type
(prediction_type
): String value with type of prediction.
Example JSON definition of step OCR Model
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/ocr_model@v1",
"images": "$inputs.image"
}