OpenAI¶
v2¶
Class: OpenAIBlockV2
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.openai.v2.OpenAIBlockV2
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Ask a question to OpenAI's GPT-4 with Vision model.
You can specify arbitrary text prompts or predefined ones, the block supports the following types of prompt:
-
Open Prompt (
unconstrained
) - Use any prompt to generate a raw response -
Text Recognition (OCR) (
ocr
) - Model recognizes text in the image -
Visual Question Answering (
visual-question-answering
) - Model answers the question you submit in the prompt -
Captioning (short) (
caption
) - Model provides a short description of the image -
Captioning (
detailed-caption
) - Model provides a long description of the image -
Single-Label Classification (
classification
) - Model classifies the image content as one of the provided classes -
Multi-Label Classification (
multi-label-classification
) - Model classifies the image content as one or more of the provided classes -
Structured Output Generation (
structured-answering
) - Model returns a JSON response with the specified fields
You need to provide your OpenAI API key to use the GPT-4 with Vision model.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/open_ai@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the OpenAI model. | ✅ |
output_structure |
Dict[str, str] |
Dictionary with structure of expected JSON response. | ❌ |
classes |
List[str] |
List of classes to be used. | ✅ |
api_key |
str |
Your OpenAI API key. | ✅ |
model_version |
str |
Model to be used. | ✅ |
image_detail |
str |
Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity.. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response.. | ❌ |
temperature |
float |
Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are.. | ✅ |
max_concurrent_requests |
int |
Number of concurrent requests that can be executed by block when batch of input images provided. If not given - block defaults to value configured globally in Workflows Execution Engine. Please restrict if you hit OpenAI limits.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to OpenAI
in version v2
.
- inputs:
Identify Changes
,Camera Focus
,Polygon Zone Visualization
,Slack Notification
,Local File Sink
,Grid Visualization
,Image Convert Grayscale
,Trace Visualization
,Instance Segmentation Model
,Absolute Static Crop
,Roboflow Custom Metadata
,Perspective Correction
,OpenAI
,Circle Visualization
,Dimension Collapse
,Clip Comparison
,Image Slicer
,OpenAI
,Cosine Similarity
,Triangle Visualization
,Halo Visualization
,Gaze Detection
,Size Measurement
,Corner Visualization
,Email Notification
,Object Detection Model
,LMM
,Roboflow Dataset Upload
,Dynamic Crop
,Depth Estimation
,Dynamic Zone
,Model Monitoring Inference Aggregator
,Buffer
,Stitch Images
,Llama 3.2 Vision
,Anthropic Claude
,Model Comparison Visualization
,Crop Visualization
,Blur Visualization
,CogVLM
,Image Threshold
,Stability AI Inpainting
,VLM as Detector
,Relative Static Crop
,Image Preprocessing
,Keypoint Visualization
,Background Color Visualization
,Clip Comparison
,Color Visualization
,Twilio SMS Notification
,OCR Model
,Multi-Label Classification Model
,Classification Label Visualization
,Google Vision OCR
,Camera Calibration
,Pixelate Visualization
,Stitch OCR Detections
,Label Visualization
,Image Slicer
,Reference Path Visualization
,Single-Label Classification Model
,Webhook Sink
,Google Gemini
,Roboflow Dataset Upload
,Line Counter Visualization
,Image Blur
,Florence-2 Model
,SIFT Comparison
,LMM For Classification
,Image Contours
,Polygon Visualization
,CSV Formatter
,SIFT
,Florence-2 Model
,Ellipse Visualization
,Mask Visualization
,Keypoint Detection Model
,Bounding Box Visualization
,Dot Visualization
,Stability AI Image Generation
,VLM as Classifier
- outputs:
Line Counter
,Polygon Zone Visualization
,Slack Notification
,Time in Zone
,Local File Sink
,Grid Visualization
,YOLO-World Model
,Instance Segmentation Model
,Trace Visualization
,Roboflow Custom Metadata
,Perspective Correction
,OpenAI
,Distance Measurement
,Circle Visualization
,Clip Comparison
,OpenAI
,Triangle Visualization
,Halo Visualization
,Line Counter
,Size Measurement
,Corner Visualization
,Email Notification
,Object Detection Model
,LMM
,Detections Consensus
,Roboflow Dataset Upload
,Dynamic Crop
,Cache Set
,VLM as Classifier
,Model Monitoring Inference Aggregator
,Cache Get
,Buffer
,Segment Anything 2 Model
,Object Detection Model
,Llama 3.2 Vision
,Anthropic Claude
,Model Comparison Visualization
,Keypoint Detection Model
,Crop Visualization
,CLIP Embedding Model
,CogVLM
,Image Threshold
,Stability AI Inpainting
,VLM as Detector
,Image Preprocessing
,Keypoint Visualization
,Background Color Visualization
,Path Deviation
,Pixel Color Count
,Clip Comparison
,Color Visualization
,Twilio SMS Notification
,Classification Label Visualization
,Google Vision OCR
,Label Visualization
,Time in Zone
,Reference Path Visualization
,Webhook Sink
,JSON Parser
,Google Gemini
,Roboflow Dataset Upload
,Line Counter Visualization
,Image Blur
,Florence-2 Model
,SIFT Comparison
,LMM For Classification
,Instance Segmentation Model
,Polygon Visualization
,Florence-2 Model
,Mask Visualization
,Ellipse Visualization
,Keypoint Detection Model
,Detections Stitch
,Bounding Box Visualization
,Dot Visualization
,Stability AI Image Generation
,VLM as Detector
,Path Deviation
,VLM as Classifier
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
OpenAI
in version v2
has.
Bindings
-
input
images
(image
): The image to infer on..prompt
(string
): Text prompt to the OpenAI model.classes
(list_of_values
): List of classes to be used.api_key
(Union[string
,secret
]): Your OpenAI API key.model_version
(string
): Model to be used.image_detail
(string
): Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity..temperature
(float
): Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are..
-
output
output
(Union[string
,language_model_output
]): String value ifstring
or LLM / VLM output iflanguage_model_output
.classes
(list_of_values
): List of values of any type.
Example JSON definition of step OpenAI
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/open_ai@v2",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"output_structure": {
"my_key": "description"
},
"classes": [
"class-a",
"class-b"
],
"api_key": "xxx-xxx",
"model_version": "gpt-4o",
"image_detail": "auto",
"max_tokens": "<block_does_not_provide_example>",
"temperature": "<block_does_not_provide_example>",
"max_concurrent_requests": "<block_does_not_provide_example>"
}
v1¶
Class: OpenAIBlockV1
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.openai.v1.OpenAIBlockV1
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Ask a question to OpenAI's GPT-4 with Vision model.
You can specify arbitrary text prompts to the OpenAIBlock.
You need to provide your OpenAI API key to use the GPT-4 with Vision model.
This model was previously part of the LMM block.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/open_ai@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
prompt |
str |
Text prompt to the OpenAI model. | ✅ |
openai_api_key |
str |
Your OpenAI API key. | ✅ |
openai_model |
str |
Model to be used. | ✅ |
json_output_format |
Dict[str, str] |
Holds dictionary that maps name of requested output field into its description. | ❌ |
image_detail |
str |
Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity.. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to OpenAI
in version v1
.
- inputs:
Camera Focus
,Polygon Zone Visualization
,Slack Notification
,Local File Sink
,Grid Visualization
,Image Convert Grayscale
,Trace Visualization
,Instance Segmentation Model
,Absolute Static Crop
,Roboflow Custom Metadata
,Perspective Correction
,OpenAI
,Circle Visualization
,Clip Comparison
,Image Slicer
,OpenAI
,Triangle Visualization
,Halo Visualization
,Corner Visualization
,Email Notification
,Object Detection Model
,LMM
,Roboflow Dataset Upload
,Dynamic Crop
,Depth Estimation
,Model Monitoring Inference Aggregator
,Stitch Images
,Llama 3.2 Vision
,Anthropic Claude
,Model Comparison Visualization
,Crop Visualization
,Blur Visualization
,CogVLM
,Image Threshold
,Stability AI Inpainting
,VLM as Detector
,Relative Static Crop
,Image Preprocessing
,Keypoint Visualization
,Background Color Visualization
,Color Visualization
,Twilio SMS Notification
,OCR Model
,Multi-Label Classification Model
,Classification Label Visualization
,Google Vision OCR
,Camera Calibration
,Pixelate Visualization
,Stitch OCR Detections
,Label Visualization
,Image Slicer
,Reference Path Visualization
,Single-Label Classification Model
,Webhook Sink
,Google Gemini
,Roboflow Dataset Upload
,Line Counter Visualization
,Image Blur
,Florence-2 Model
,SIFT Comparison
,LMM For Classification
,Image Contours
,Polygon Visualization
,CSV Formatter
,SIFT
,Florence-2 Model
,Ellipse Visualization
,Mask Visualization
,Keypoint Detection Model
,Bounding Box Visualization
,Dot Visualization
,Stability AI Image Generation
,VLM as Classifier
- outputs:
Line Counter
,Single-Label Classification Model
,Slack Notification
,YOLO-World Model
,Image Convert Grayscale
,Absolute Static Crop
,Perspective Correction
,OpenAI
,Distance Measurement
,Image Slicer
,OpenAI
,Cosine Similarity
,Halo Visualization
,Byte Tracker
,Corner Visualization
,Email Notification
,Object Detection Model
,Detections Classes Replacement
,Template Matching
,Roboflow Dataset Upload
,Overlap Filter
,Dynamic Crop
,Cache Set
,VLM as Classifier
,Depth Estimation
,Dynamic Zone
,Model Monitoring Inference Aggregator
,Cache Get
,Llama 3.2 Vision
,Anthropic Claude
,Crop Visualization
,Blur Visualization
,Dominant Color
,Image Threshold
,Stability AI Inpainting
,Relative Static Crop
,Path Deviation
,Clip Comparison
,Moondream2
,Twilio SMS Notification
,OCR Model
,Data Aggregator
,Google Vision OCR
,Pixelate Visualization
,Property Definition
,Stitch OCR Detections
,Image Slicer
,Time in Zone
,Webhook Sink
,JSON Parser
,Line Counter Visualization
,Byte Tracker
,Image Blur
,Florence-2 Model
,Delta Filter
,Detections Stabilizer
,LMM For Classification
,Instance Segmentation Model
,Keypoint Detection Model
,Detections Stitch
,Bounding Rectangle
,Stability AI Image Generation
,VLM as Classifier
,Identify Changes
,Detection Offset
,Camera Focus
,First Non Empty Or Default
,Polygon Zone Visualization
,Detections Filter
,Time in Zone
,Local File Sink
,Grid Visualization
,Instance Segmentation Model
,Trace Visualization
,Roboflow Custom Metadata
,Continue If
,Circle Visualization
,Dimension Collapse
,Clip Comparison
,Triangle Visualization
,QR Code Detection
,Gaze Detection
,Line Counter
,Size Measurement
,Byte Tracker
,LMM
,Detections Consensus
,Velocity
,Buffer
,Stitch Images
,Segment Anything 2 Model
,Object Detection Model
,Model Comparison Visualization
,Keypoint Detection Model
,SIFT Comparison
,CLIP Embedding Model
,CogVLM
,Expression
,SmolVLM2
,VLM as Detector
,Image Preprocessing
,Keypoint Visualization
,Background Color Visualization
,Pixel Color Count
,Barcode Detection
,Color Visualization
,Multi-Label Classification Model
,Classification Label Visualization
,Camera Calibration
,Label Visualization
,Reference Path Visualization
,Single-Label Classification Model
,Google Gemini
,Roboflow Dataset Upload
,Qwen2.5-VL
,Identify Outliers
,Multi-Label Classification Model
,Detections Transformation
,SIFT Comparison
,Image Contours
,Polygon Visualization
,CSV Formatter
,SIFT
,Florence-2 Model
,Detections Merge
,Mask Visualization
,Ellipse Visualization
,Rate Limiter
,Bounding Box Visualization
,Dot Visualization
,VLM as Detector
,Path Deviation
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
OpenAI
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..prompt
(string
): Text prompt to the OpenAI model.openai_api_key
(Union[string
,secret
]): Your OpenAI API key.openai_model
(string
): Model to be used.image_detail
(string
): Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity..
-
output
parent_id
(parent_id
): Identifier of parent for step output.root_parent_id
(parent_id
): Identifier of parent for step output.image
(image_metadata
): Dictionary with image metadata required by supervision.structured_output
(dictionary
): Dictionary.raw_output
(string
): String value.*
(*
): Equivalent of any element.
Example JSON definition of step OpenAI
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/open_ai@v1",
"images": "$inputs.image",
"prompt": "my prompt",
"openai_api_key": "xxx-xxx",
"openai_model": "gpt-4o",
"json_output_format": {
"count": "number of cats in the picture"
},
"image_detail": "auto",
"max_tokens": 450
}