OpenAI¶
v2¶
Class: OpenAIBlockV2
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.openai.v2.OpenAIBlockV2
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Ask a question to OpenAI's GPT-4 with Vision model.
You can specify arbitrary text prompts or predefined ones, the block supports the following types of prompt:
-
Open Prompt (
unconstrained
) - Use any prompt to generate a raw response -
Text Recognition (OCR) (
ocr
) - Model recognizes text in the image -
Visual Question Answering (
visual-question-answering
) - Model answers the question you submit in the prompt -
Captioning (short) (
caption
) - Model provides a short description of the image -
Captioning (
detailed-caption
) - Model provides a long description of the image -
Single-Label Classification (
classification
) - Model classifies the image content as one of the provided classes -
Multi-Label Classification (
multi-label-classification
) - Model classifies the image content as one or more of the provided classes -
Structured Output Generation (
structured-answering
) - Model returns a JSON response with the specified fields
You need to provide your OpenAI API key to use the GPT-4 with Vision model.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/open_ai@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the OpenAI model. | ✅ |
output_structure |
Dict[str, str] |
Dictionary with structure of expected JSON response. | ❌ |
classes |
List[str] |
List of classes to be used. | ✅ |
api_key |
str |
Your OpenAI API key. | ✅ |
model_version |
str |
Model to be used. | ✅ |
image_detail |
str |
Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity.. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response.. | ❌ |
temperature |
float |
Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are.. | ✅ |
max_concurrent_requests |
int |
Number of concurrent requests that can be executed by block when batch of input images provided. If not given - block defaults to value configured globally in Workflows Execution Engine. Please restrict if you hit OpenAI limits.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to OpenAI
in version v2
.
- inputs:
LMM
,Depth Estimation
,Classification Label Visualization
,Camera Calibration
,Stitch OCR Detections
,LMM For Classification
,Clip Comparison
,CSV Formatter
,Instance Segmentation Model
,Stitch Images
,Cosine Similarity
,CogVLM
,Image Slicer
,Roboflow Dataset Upload
,Absolute Static Crop
,Twilio SMS Notification
,Florence-2 Model
,OpenAI
,Label Visualization
,Single-Label Classification Model
,Roboflow Dataset Upload
,Dimension Collapse
,Bounding Box Visualization
,Llama 3.2 Vision
,Model Comparison Visualization
,Slack Notification
,Object Detection Model
,VLM as Classifier
,Grid Visualization
,Dynamic Zone
,Image Convert Grayscale
,Halo Visualization
,Buffer
,Triangle Visualization
,Model Monitoring Inference Aggregator
,Keypoint Detection Model
,Reference Path Visualization
,Perspective Correction
,Dynamic Crop
,Camera Focus
,Identify Changes
,VLM as Detector
,Florence-2 Model
,Local File Sink
,OpenAI
,Google Vision OCR
,Stability AI Image Generation
,Ellipse Visualization
,Size Measurement
,SIFT
,Blur Visualization
,Circle Visualization
,Dot Visualization
,Image Blur
,Background Color Visualization
,Gaze Detection
,Multi-Label Classification Model
,Color Visualization
,Pixelate Visualization
,Clip Comparison
,Google Gemini
,Stability AI Inpainting
,Polygon Zone Visualization
,Relative Static Crop
,OCR Model
,Keypoint Visualization
,Mask Visualization
,Image Preprocessing
,Line Counter Visualization
,Roboflow Custom Metadata
,Anthropic Claude
,Webhook Sink
,SIFT Comparison
,Trace Visualization
,Corner Visualization
,Polygon Visualization
,Crop Visualization
,Email Notification
,Image Contours
,Image Slicer
,Image Threshold
- outputs:
LMM
,Classification Label Visualization
,LMM For Classification
,Clip Comparison
,Line Counter
,Instance Segmentation Model
,CogVLM
,Roboflow Dataset Upload
,Distance Measurement
,Twilio SMS Notification
,Object Detection Model
,Florence-2 Model
,OpenAI
,Label Visualization
,Path Deviation
,Roboflow Dataset Upload
,Detections Stitch
,Bounding Box Visualization
,Llama 3.2 Vision
,Model Comparison Visualization
,Slack Notification
,Pixel Color Count
,Object Detection Model
,VLM as Classifier
,Detections Consensus
,Grid Visualization
,Halo Visualization
,Buffer
,Triangle Visualization
,Model Monitoring Inference Aggregator
,Time in Zone
,Keypoint Detection Model
,Reference Path Visualization
,Perspective Correction
,Dynamic Crop
,Time in Zone
,Cache Get
,VLM as Detector
,Florence-2 Model
,Cache Set
,Local File Sink
,Path Deviation
,OpenAI
,Google Vision OCR
,VLM as Detector
,Stability AI Image Generation
,Ellipse Visualization
,Size Measurement
,Circle Visualization
,Dot Visualization
,Image Blur
,CLIP Embedding Model
,Background Color Visualization
,Color Visualization
,Clip Comparison
,Google Gemini
,Stability AI Inpainting
,Keypoint Detection Model
,VLM as Classifier
,Polygon Zone Visualization
,Keypoint Visualization
,Mask Visualization
,Image Preprocessing
,Line Counter Visualization
,Roboflow Custom Metadata
,Anthropic Claude
,Webhook Sink
,SIFT Comparison
,YOLO-World Model
,Trace Visualization
,JSON Parser
,Instance Segmentation Model
,Corner Visualization
,Polygon Visualization
,Segment Anything 2 Model
,Crop Visualization
,Email Notification
,Line Counter
,Image Threshold
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
OpenAI
in version v2
has.
Bindings
-
input
images
(image
): The image to infer on..prompt
(string
): Text prompt to the OpenAI model.classes
(list_of_values
): List of classes to be used.api_key
(Union[string
,secret
]): Your OpenAI API key.model_version
(string
): Model to be used.image_detail
(string
): Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity..temperature
(float
): Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are..
-
output
output
(Union[string
,language_model_output
]): String value ifstring
or LLM / VLM output iflanguage_model_output
.classes
(list_of_values
): List of values of any type.
Example JSON definition of step OpenAI
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/open_ai@v2",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"output_structure": {
"my_key": "description"
},
"classes": [
"class-a",
"class-b"
],
"api_key": "xxx-xxx",
"model_version": "gpt-4o",
"image_detail": "auto",
"max_tokens": "<block_does_not_provide_example>",
"temperature": "<block_does_not_provide_example>",
"max_concurrent_requests": "<block_does_not_provide_example>"
}
v1¶
Class: OpenAIBlockV1
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.openai.v1.OpenAIBlockV1
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Ask a question to OpenAI's GPT-4 with Vision model.
You can specify arbitrary text prompts to the OpenAIBlock.
You need to provide your OpenAI API key to use the GPT-4 with Vision model.
This model was previously part of the LMM block.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/open_ai@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
prompt |
str |
Text prompt to the OpenAI model. | ✅ |
openai_api_key |
str |
Your OpenAI API key. | ✅ |
openai_model |
str |
Model to be used. | ✅ |
json_output_format |
Dict[str, str] |
Holds dictionary that maps name of requested output field into its description. | ❌ |
image_detail |
str |
Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity.. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to OpenAI
in version v1
.
- inputs:
LMM
,Depth Estimation
,Classification Label Visualization
,Camera Calibration
,Stitch OCR Detections
,LMM For Classification
,Clip Comparison
,CSV Formatter
,Instance Segmentation Model
,Stitch Images
,CogVLM
,Image Slicer
,Roboflow Dataset Upload
,Absolute Static Crop
,Twilio SMS Notification
,Florence-2 Model
,OpenAI
,Label Visualization
,Single-Label Classification Model
,Roboflow Dataset Upload
,Bounding Box Visualization
,Llama 3.2 Vision
,Model Comparison Visualization
,Slack Notification
,Object Detection Model
,VLM as Classifier
,Grid Visualization
,Image Convert Grayscale
,Halo Visualization
,Triangle Visualization
,Model Monitoring Inference Aggregator
,Keypoint Detection Model
,Reference Path Visualization
,Perspective Correction
,Dynamic Crop
,Camera Focus
,VLM as Detector
,Florence-2 Model
,Local File Sink
,OpenAI
,Google Vision OCR
,Stability AI Image Generation
,Ellipse Visualization
,SIFT
,Blur Visualization
,Circle Visualization
,Dot Visualization
,Image Blur
,Background Color Visualization
,Multi-Label Classification Model
,Color Visualization
,Pixelate Visualization
,Google Gemini
,Stability AI Inpainting
,Polygon Zone Visualization
,Relative Static Crop
,OCR Model
,Keypoint Visualization
,Mask Visualization
,Image Preprocessing
,Line Counter Visualization
,Roboflow Custom Metadata
,Anthropic Claude
,Webhook Sink
,SIFT Comparison
,Trace Visualization
,Corner Visualization
,Polygon Visualization
,Crop Visualization
,Email Notification
,Image Contours
,Image Slicer
,Image Threshold
- outputs:
Camera Calibration
,Stitch OCR Detections
,CSV Formatter
,Instance Segmentation Model
,Cosine Similarity
,CogVLM
,Distance Measurement
,Absolute Static Crop
,Object Detection Model
,Florence-2 Model
,Byte Tracker
,Label Visualization
,Path Deviation
,Single-Label Classification Model
,Dimension Collapse
,Detections Stitch
,Model Comparison Visualization
,Slack Notification
,Object Detection Model
,VLM as Classifier
,Bounding Rectangle
,Detections Consensus
,Data Aggregator
,Halo Visualization
,Detection Offset
,Overlap Filter
,Time in Zone
,Keypoint Detection Model
,First Non Empty Or Default
,Reference Path Visualization
,Perspective Correction
,Dynamic Crop
,Detections Transformation
,Camera Focus
,Detections Classes Replacement
,VLM as Detector
,Delta Filter
,Cache Set
,Local File Sink
,Path Deviation
,OpenAI
,Google Vision OCR
,VLM as Detector
,Stability AI Image Generation
,Ellipse Visualization
,Blur Visualization
,Circle Visualization
,Image Blur
,Background Color Visualization
,Multi-Label Classification Model
,Single-Label Classification Model
,Rate Limiter
,Detections Filter
,Pixelate Visualization
,Identify Outliers
,Google Gemini
,Stability AI Inpainting
,Keypoint Detection Model
,Keypoint Visualization
,Template Matching
,Mask Visualization
,SmolVLM2
,YOLO-World Model
,Trace Visualization
,JSON Parser
,Polygon Visualization
,Segment Anything 2 Model
,Expression
,LMM
,Depth Estimation
,Classification Label Visualization
,LMM For Classification
,Clip Comparison
,Line Counter
,Stitch Images
,Byte Tracker
,Image Slicer
,Roboflow Dataset Upload
,Twilio SMS Notification
,Multi-Label Classification Model
,SIFT Comparison
,OpenAI
,QR Code Detection
,Qwen2.5-VL
,Roboflow Dataset Upload
,Bounding Box Visualization
,Llama 3.2 Vision
,Pixel Color Count
,Moondream2
,Grid Visualization
,Detections Merge
,Dynamic Zone
,Image Convert Grayscale
,Continue If
,Buffer
,Triangle Visualization
,Model Monitoring Inference Aggregator
,Time in Zone
,Cache Get
,Identify Changes
,Florence-2 Model
,Size Measurement
,SIFT
,Dot Visualization
,CLIP Embedding Model
,Gaze Detection
,Color Visualization
,Byte Tracker
,Dominant Color
,Clip Comparison
,VLM as Classifier
,Polygon Zone Visualization
,Relative Static Crop
,Property Definition
,Detections Stabilizer
,OCR Model
,Velocity
,Image Preprocessing
,Line Counter Visualization
,Roboflow Custom Metadata
,Anthropic Claude
,Webhook Sink
,SIFT Comparison
,Instance Segmentation Model
,Corner Visualization
,Barcode Detection
,Crop Visualization
,Email Notification
,Image Contours
,Image Slicer
,Line Counter
,Image Threshold
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
OpenAI
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..prompt
(string
): Text prompt to the OpenAI model.openai_api_key
(Union[string
,secret
]): Your OpenAI API key.openai_model
(string
): Model to be used.image_detail
(string
): Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity..
-
output
parent_id
(parent_id
): Identifier of parent for step output.root_parent_id
(parent_id
): Identifier of parent for step output.image
(image_metadata
): Dictionary with image metadata required by supervision.structured_output
(dictionary
): Dictionary.raw_output
(string
): String value.*
(*
): Equivalent of any element.
Example JSON definition of step OpenAI
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/open_ai@v1",
"images": "$inputs.image",
"prompt": "my prompt",
"openai_api_key": "xxx-xxx",
"openai_model": "gpt-4o",
"json_output_format": {
"count": "number of cats in the picture"
},
"image_detail": "auto",
"max_tokens": 450
}