OpenAI¶
v3¶
Class: OpenAIBlockV3
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.openai.v3.OpenAIBlockV3
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Ask a question to OpenAI's GPT-4 with Vision model.
You can specify arbitrary text prompts or predefined ones, the block supports the following types of prompt:
-
Open Prompt (
unconstrained
) - Use any prompt to generate a raw response -
Text Recognition (OCR) (
ocr
) - Model recognizes text in the image -
Visual Question Answering (
visual-question-answering
) - Model answers the question you submit in the prompt -
Captioning (short) (
caption
) - Model provides a short description of the image -
Captioning (
detailed-caption
) - Model provides a long description of the image -
Single-Label Classification (
classification
) - Model classifies the image content as one of the provided classes -
Multi-Label Classification (
multi-label-classification
) - Model classifies the image content as one or more of the provided classes -
Structured Output Generation (
structured-answering
) - Model returns a JSON response with the specified fields
Provide your OpenAI API key or set the value to rf_key:account
(or
rf_key:user:<id>
) to proxy requests through Roboflow's API.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/open_ai@v3
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the OpenAI model. | ✅ |
output_structure |
Dict[str, str] |
Dictionary with structure of expected JSON response. | ❌ |
classes |
List[str] |
List of classes to be used. | ✅ |
api_key |
str |
Your OpenAI API key. | ✅ |
model_version |
str |
Model to be used. | ✅ |
image_detail |
str |
Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity.. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response.. | ❌ |
temperature |
float |
Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are.. | ✅ |
max_concurrent_requests |
int |
Number of concurrent requests that can be executed by block when batch of input images provided. If not given - block defaults to value configured globally in Workflows Execution Engine. Please restrict if you hit OpenAI limits.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to OpenAI
in version v3
.
- inputs:
Blur Visualization
,Triangle Visualization
,Anthropic Claude
,Trace Visualization
,Label Visualization
,LMM
,Model Monitoring Inference Aggregator
,Roboflow Dataset Upload
,Absolute Static Crop
,Image Preprocessing
,Relative Static Crop
,Image Threshold
,Reference Path Visualization
,Slack Notification
,Stability AI Outpainting
,SIFT
,Roboflow Dataset Upload
,Google Vision OCR
,Dimension Collapse
,Stability AI Inpainting
,Background Color Visualization
,CSV Formatter
,Circle Visualization
,Image Blur
,Keypoint Visualization
,VLM as Detector
,Google Gemini
,OpenAI
,Image Convert Grayscale
,Line Counter Visualization
,Model Comparison Visualization
,Dynamic Zone
,Roboflow Custom Metadata
,Image Slicer
,Stitch OCR Detections
,Crop Visualization
,Corner Visualization
,Multi-Label Classification Model
,Pixelate Visualization
,Local File Sink
,Image Slicer
,Mask Visualization
,VLM as Classifier
,Clip Comparison
,Color Visualization
,Polygon Visualization
,Email Notification
,Keypoint Detection Model
,Size Measurement
,Gaze Detection
,Perspective Correction
,Camera Calibration
,OpenAI
,Bounding Box Visualization
,Buffer
,Camera Focus
,CogVLM
,Instance Segmentation Model
,Twilio SMS Notification
,OpenAI
,Dynamic Crop
,Depth Estimation
,Halo Visualization
,Florence-2 Model
,Dot Visualization
,Classification Label Visualization
,Webhook Sink
,SIFT Comparison
,Stability AI Image Generation
,Florence-2 Model
,LMM For Classification
,Ellipse Visualization
,Image Contours
,Llama 3.2 Vision
,Clip Comparison
,Single-Label Classification Model
,Identify Changes
,Grid Visualization
,Stitch Images
,OCR Model
,Cosine Similarity
,Object Detection Model
,Polygon Zone Visualization
- outputs:
Anthropic Claude
,Triangle Visualization
,Trace Visualization
,YOLO-World Model
,Label Visualization
,LMM
,Distance Measurement
,Model Monitoring Inference Aggregator
,Roboflow Dataset Upload
,Time in Zone
,Pixel Color Count
,Image Preprocessing
,Keypoint Detection Model
,Image Threshold
,Reference Path Visualization
,Segment Anything 2 Model
,Slack Notification
,Stability AI Outpainting
,Instance Segmentation Model
,Roboflow Dataset Upload
,Google Vision OCR
,Stability AI Inpainting
,Background Color Visualization
,Image Blur
,Circle Visualization
,Keypoint Visualization
,VLM as Detector
,Google Gemini
,OpenAI
,PTZ Tracking (ONVIF)
.md),Line Counter Visualization
,Model Comparison Visualization
,Perception Encoder Embedding Model
,Path Deviation
,JSON Parser
,Roboflow Custom Metadata
,Line Counter
,Crop Visualization
,Corner Visualization
,VLM as Classifier
,Local File Sink
,Cache Set
,Mask Visualization
,VLM as Classifier
,Clip Comparison
,Color Visualization
,Polygon Visualization
,Email Notification
,Keypoint Detection Model
,Size Measurement
,Perspective Correction
,Path Deviation
,Detections Consensus
,OpenAI
,Bounding Box Visualization
,Buffer
,Detections Stitch
,CogVLM
,Twilio SMS Notification
,OpenAI
,Instance Segmentation Model
,Dynamic Crop
,Detections Classes Replacement
,Halo Visualization
,Florence-2 Model
,Dot Visualization
,Classification Label Visualization
,Webhook Sink
,Time in Zone
,SIFT Comparison
,Stability AI Image Generation
,Florence-2 Model
,VLM as Detector
,LMM For Classification
,Object Detection Model
,Ellipse Visualization
,Llama 3.2 Vision
,Line Counter
,Clip Comparison
,Grid Visualization
,CLIP Embedding Model
,Object Detection Model
,Cache Get
,Polygon Zone Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
OpenAI
in version v3
has.
Bindings
-
input
images
(image
): The image to infer on..prompt
(string
): Text prompt to the OpenAI model.classes
(list_of_values
): List of classes to be used.api_key
(Union[string
,secret
,ROBOFLOW_MANAGED_KEY
]): Your OpenAI API key.model_version
(string
): Model to be used.image_detail
(string
): Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity..temperature
(float
): Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are..
-
output
output
(Union[string
,language_model_output
]): String value ifstring
or LLM / VLM output iflanguage_model_output
.classes
(list_of_values
): List of values of any type.
Example JSON definition of step OpenAI
in version v3
{
"name": "<your_step_name_here>",
"type": "roboflow_core/open_ai@v3",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"output_structure": {
"my_key": "description"
},
"classes": [
"class-a",
"class-b"
],
"api_key": "xxx-xxx",
"model_version": "gpt-4o",
"image_detail": "auto",
"max_tokens": "<block_does_not_provide_example>",
"temperature": "<block_does_not_provide_example>",
"max_concurrent_requests": "<block_does_not_provide_example>"
}
v2¶
Class: OpenAIBlockV2
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.openai.v2.OpenAIBlockV2
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Ask a question to OpenAI's GPT-4 with Vision model.
You can specify arbitrary text prompts or predefined ones, the block supports the following types of prompt:
-
Open Prompt (
unconstrained
) - Use any prompt to generate a raw response -
Text Recognition (OCR) (
ocr
) - Model recognizes text in the image -
Visual Question Answering (
visual-question-answering
) - Model answers the question you submit in the prompt -
Captioning (short) (
caption
) - Model provides a short description of the image -
Captioning (
detailed-caption
) - Model provides a long description of the image -
Single-Label Classification (
classification
) - Model classifies the image content as one of the provided classes -
Multi-Label Classification (
multi-label-classification
) - Model classifies the image content as one or more of the provided classes -
Structured Output Generation (
structured-answering
) - Model returns a JSON response with the specified fields
You need to provide your OpenAI API key to use the GPT-4 with Vision model.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/open_ai@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
task_type |
str |
Task type to be performed by model. Value determines required parameters and output response.. | ❌ |
prompt |
str |
Text prompt to the OpenAI model. | ✅ |
output_structure |
Dict[str, str] |
Dictionary with structure of expected JSON response. | ❌ |
classes |
List[str] |
List of classes to be used. | ✅ |
api_key |
str |
Your OpenAI API key. | ✅ |
model_version |
str |
Model to be used. | ✅ |
image_detail |
str |
Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity.. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response.. | ❌ |
temperature |
float |
Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are.. | ✅ |
max_concurrent_requests |
int |
Number of concurrent requests that can be executed by block when batch of input images provided. If not given - block defaults to value configured globally in Workflows Execution Engine. Please restrict if you hit OpenAI limits.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to OpenAI
in version v2
.
- inputs:
Blur Visualization
,Triangle Visualization
,Anthropic Claude
,Trace Visualization
,Label Visualization
,LMM
,Model Monitoring Inference Aggregator
,Roboflow Dataset Upload
,Absolute Static Crop
,Image Preprocessing
,Relative Static Crop
,Image Threshold
,Reference Path Visualization
,Slack Notification
,Stability AI Outpainting
,SIFT
,Roboflow Dataset Upload
,Google Vision OCR
,Dimension Collapse
,Stability AI Inpainting
,Background Color Visualization
,CSV Formatter
,Circle Visualization
,Image Blur
,Keypoint Visualization
,VLM as Detector
,Google Gemini
,OpenAI
,Image Convert Grayscale
,Line Counter Visualization
,Model Comparison Visualization
,Dynamic Zone
,Roboflow Custom Metadata
,Image Slicer
,Stitch OCR Detections
,Crop Visualization
,Corner Visualization
,Multi-Label Classification Model
,Pixelate Visualization
,Local File Sink
,Image Slicer
,Mask Visualization
,VLM as Classifier
,Clip Comparison
,Color Visualization
,Polygon Visualization
,Email Notification
,Keypoint Detection Model
,Size Measurement
,Gaze Detection
,Perspective Correction
,Camera Calibration
,OpenAI
,Bounding Box Visualization
,Buffer
,Camera Focus
,CogVLM
,Instance Segmentation Model
,Twilio SMS Notification
,OpenAI
,Dynamic Crop
,Depth Estimation
,Halo Visualization
,Florence-2 Model
,Dot Visualization
,Classification Label Visualization
,Webhook Sink
,SIFT Comparison
,Stability AI Image Generation
,Florence-2 Model
,LMM For Classification
,Ellipse Visualization
,Image Contours
,Llama 3.2 Vision
,Clip Comparison
,Single-Label Classification Model
,Identify Changes
,Grid Visualization
,Stitch Images
,OCR Model
,Cosine Similarity
,Object Detection Model
,Polygon Zone Visualization
- outputs:
Anthropic Claude
,Triangle Visualization
,Trace Visualization
,YOLO-World Model
,Label Visualization
,LMM
,Distance Measurement
,Model Monitoring Inference Aggregator
,Roboflow Dataset Upload
,Time in Zone
,Pixel Color Count
,Image Preprocessing
,Keypoint Detection Model
,Image Threshold
,Reference Path Visualization
,Segment Anything 2 Model
,Slack Notification
,Stability AI Outpainting
,Instance Segmentation Model
,Roboflow Dataset Upload
,Google Vision OCR
,Stability AI Inpainting
,Background Color Visualization
,Image Blur
,Circle Visualization
,Keypoint Visualization
,VLM as Detector
,Google Gemini
,OpenAI
,PTZ Tracking (ONVIF)
.md),Line Counter Visualization
,Model Comparison Visualization
,Perception Encoder Embedding Model
,Path Deviation
,JSON Parser
,Roboflow Custom Metadata
,Line Counter
,Crop Visualization
,Corner Visualization
,VLM as Classifier
,Local File Sink
,Cache Set
,Mask Visualization
,VLM as Classifier
,Clip Comparison
,Color Visualization
,Polygon Visualization
,Email Notification
,Keypoint Detection Model
,Size Measurement
,Perspective Correction
,Path Deviation
,Detections Consensus
,OpenAI
,Bounding Box Visualization
,Buffer
,Detections Stitch
,CogVLM
,Twilio SMS Notification
,OpenAI
,Instance Segmentation Model
,Dynamic Crop
,Detections Classes Replacement
,Halo Visualization
,Florence-2 Model
,Dot Visualization
,Classification Label Visualization
,Webhook Sink
,Time in Zone
,SIFT Comparison
,Stability AI Image Generation
,Florence-2 Model
,VLM as Detector
,LMM For Classification
,Object Detection Model
,Ellipse Visualization
,Llama 3.2 Vision
,Line Counter
,Clip Comparison
,Grid Visualization
,CLIP Embedding Model
,Object Detection Model
,Cache Get
,Polygon Zone Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
OpenAI
in version v2
has.
Bindings
-
input
images
(image
): The image to infer on..prompt
(string
): Text prompt to the OpenAI model.classes
(list_of_values
): List of classes to be used.api_key
(Union[string
,secret
]): Your OpenAI API key.model_version
(string
): Model to be used.image_detail
(string
): Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity..temperature
(float
): Temperature to sample from the model - value in range 0.0-2.0, the higher - the more random / "creative" the generations are..
-
output
output
(Union[string
,language_model_output
]): String value ifstring
or LLM / VLM output iflanguage_model_output
.classes
(list_of_values
): List of values of any type.
Example JSON definition of step OpenAI
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/open_ai@v2",
"images": "$inputs.image",
"task_type": "<block_does_not_provide_example>",
"prompt": "my prompt",
"output_structure": {
"my_key": "description"
},
"classes": [
"class-a",
"class-b"
],
"api_key": "xxx-xxx",
"model_version": "gpt-4o",
"image_detail": "auto",
"max_tokens": "<block_does_not_provide_example>",
"temperature": "<block_does_not_provide_example>",
"max_concurrent_requests": "<block_does_not_provide_example>"
}
v1¶
Class: OpenAIBlockV1
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.models.foundation.openai.v1.OpenAIBlockV1
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Ask a question to OpenAI's GPT-4 with Vision model.
You can specify arbitrary text prompts to the OpenAIBlock.
You need to provide your OpenAI API key to use the GPT-4 with Vision model.
This model was previously part of the LMM block.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/open_ai@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
prompt |
str |
Text prompt to the OpenAI model. | ✅ |
openai_api_key |
str |
Your OpenAI API key. | ✅ |
openai_model |
str |
Model to be used. | ✅ |
json_output_format |
Dict[str, str] |
Holds dictionary that maps name of requested output field into its description. | ❌ |
image_detail |
str |
Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity.. | ✅ |
max_tokens |
int |
Maximum number of tokens the model can generate in it's response.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to OpenAI
in version v1
.
- inputs:
Blur Visualization
,Triangle Visualization
,Anthropic Claude
,Trace Visualization
,Label Visualization
,LMM
,Model Monitoring Inference Aggregator
,Roboflow Dataset Upload
,Absolute Static Crop
,Image Preprocessing
,Relative Static Crop
,Image Threshold
,Reference Path Visualization
,Slack Notification
,Stability AI Outpainting
,SIFT
,Roboflow Dataset Upload
,Google Vision OCR
,Stability AI Inpainting
,Background Color Visualization
,CSV Formatter
,Circle Visualization
,Image Blur
,Keypoint Visualization
,VLM as Detector
,Google Gemini
,OpenAI
,Image Convert Grayscale
,Line Counter Visualization
,Model Comparison Visualization
,Roboflow Custom Metadata
,Image Slicer
,Stitch OCR Detections
,Crop Visualization
,Corner Visualization
,Multi-Label Classification Model
,Pixelate Visualization
,Local File Sink
,Image Slicer
,Mask Visualization
,VLM as Classifier
,Clip Comparison
,Color Visualization
,Polygon Visualization
,Email Notification
,Keypoint Detection Model
,Perspective Correction
,Camera Calibration
,OpenAI
,Bounding Box Visualization
,Camera Focus
,CogVLM
,Instance Segmentation Model
,Twilio SMS Notification
,OpenAI
,Dynamic Crop
,Depth Estimation
,Halo Visualization
,Florence-2 Model
,Dot Visualization
,Classification Label Visualization
,Webhook Sink
,SIFT Comparison
,Stability AI Image Generation
,Florence-2 Model
,LMM For Classification
,Ellipse Visualization
,Image Contours
,Llama 3.2 Vision
,Single-Label Classification Model
,Grid Visualization
,Stitch Images
,OCR Model
,Object Detection Model
,Polygon Zone Visualization
- outputs:
Anthropic Claude
,Triangle Visualization
,Distance Measurement
,Roboflow Dataset Upload
,Absolute Static Crop
,Segment Anything 2 Model
,QR Code Detection
,SIFT
,Identify Outliers
,Byte Tracker
,Detections Transformation
,Detections Stabilizer
,Keypoint Visualization
,VLM as Detector
,SIFT Comparison
,Image Convert Grayscale
,PTZ Tracking (ONVIF)
.md),Multi-Label Classification Model
,Model Comparison Visualization
,Perception Encoder Embedding Model
,Path Deviation
,Dynamic Zone
,JSON Parser
,Roboflow Custom Metadata
,Image Slicer
,Stitch OCR Detections
,Crop Visualization
,Corner Visualization
,Multi-Label Classification Model
,Pixelate Visualization
,Overlap Filter
,Velocity
,Mask Visualization
,Clip Comparison
,Continue If
,Keypoint Detection Model
,Data Aggregator
,Moondream2
,Bounding Rectangle
,Detections Filter
,Bounding Box Visualization
,Barcode Detection
,Camera Focus
,CogVLM
,Instance Segmentation Model
,Dynamic Crop
,Halo Visualization
,Cosine Similarity
,Florence-2 Model
,Time in Zone
,Florence-2 Model
,VLM as Detector
,LMM For Classification
,Ellipse Visualization
,First Non Empty Or Default
,Llama 3.2 Vision
,Line Counter
,Clip Comparison
,Single-Label Classification Model
,Stitch Images
,OCR Model
,Byte Tracker
,Object Detection Model
,Property Definition
,Blur Visualization
,Dominant Color
,Trace Visualization
,YOLO-World Model
,Label Visualization
,LMM
,Model Monitoring Inference Aggregator
,Time in Zone
,Pixel Color Count
,Rate Limiter
,Image Preprocessing
,Keypoint Detection Model
,Byte Tracker
,Relative Static Crop
,Image Threshold
,Reference Path Visualization
,Slack Notification
,Stability AI Outpainting
,Instance Segmentation Model
,Roboflow Dataset Upload
,Detection Offset
,Google Vision OCR
,Dimension Collapse
,Stability AI Inpainting
,Background Color Visualization
,CSV Formatter
,Image Blur
,Circle Visualization
,Google Gemini
,OpenAI
,Line Counter Visualization
,Expression
,Line Counter
,VLM as Classifier
,Local File Sink
,Image Slicer
,Cache Set
,VLM as Classifier
,Color Visualization
,Qwen2.5-VL
,Polygon Visualization
,Email Notification
,Size Measurement
,Single-Label Classification Model
,Gaze Detection
,Perspective Correction
,Detections Consensus
,Path Deviation
,Camera Calibration
,OpenAI
,Detections Merge
,Delta Filter
,Buffer
,SmolVLM2
,Detections Stitch
,Twilio SMS Notification
,OpenAI
,Detections Classes Replacement
,Depth Estimation
,Dot Visualization
,Template Matching
,Classification Label Visualization
,Webhook Sink
,SIFT Comparison
,Stability AI Image Generation
,Object Detection Model
,Image Contours
,Identify Changes
,Grid Visualization
,CLIP Embedding Model
,Cache Get
,Polygon Zone Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
OpenAI
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..prompt
(string
): Text prompt to the OpenAI model.openai_api_key
(Union[string
,secret
]): Your OpenAI API key.openai_model
(string
): Model to be used.image_detail
(string
): Indicates the image's quality, with 'high' suggesting it is of high resolution and should be processed or displayed with high fidelity..
-
output
parent_id
(parent_id
): Identifier of parent for step output.root_parent_id
(parent_id
): Identifier of parent for step output.image
(image_metadata
): Dictionary with image metadata required by supervision.structured_output
(dictionary
): Dictionary.raw_output
(string
): String value.*
(*
): Equivalent of any element.
Example JSON definition of step OpenAI
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/open_ai@v1",
"images": "$inputs.image",
"prompt": "my prompt",
"openai_api_key": "xxx-xxx",
"openai_model": "gpt-4o",
"json_output_format": {
"count": "number of cats in the picture"
},
"image_detail": "auto",
"max_tokens": 450
}