Pixel Color Count¶
Class: PixelationCountBlockV1
Source: inference.core.workflows.core_steps.classical_cv.pixel_color_count.v1.PixelationCountBlockV1
Count the number of pixels that match a specific color within a given tolerance.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/pixel_color_count@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
target_color |
Union[Tuple[int, int, int], str] |
Target color to count in the image. Can be a hex string (like '#431112') RGB string (like '(128, 32, 64)') or a RGB tuple (like (18, 17, 67)).. | ✅ |
tolerance |
int |
Tolerance for color matching.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Pixel Color Count
in version v1
.
- inputs:
Image Slicer
,Stability AI Inpainting
,Clip Comparison
,Perspective Correction
,Object Detection Model
,Roboflow Custom Metadata
,SIFT Comparison
,Grid Visualization
,Ellipse Visualization
,SIFT
,CogVLM
,VLM as Detector
,Image Contours
,OpenAI
,Absolute Static Crop
,Camera Focus
,Polygon Visualization
,Trace Visualization
,Multi-Label Classification Model
,Dot Visualization
,Google Vision OCR
,Polygon Zone Visualization
,Roboflow Dataset Upload
,Classification Label Visualization
,Corner Visualization
,Llama 3.2 Vision
,Dynamic Crop
,Reference Path Visualization
,Line Counter
,Label Visualization
,Mask Visualization
,Triangle Visualization
,Line Counter Visualization
,Template Matching
,Dominant Color
,Model Monitoring Inference Aggregator
,Blur Visualization
,Line Counter
,Anthropic Claude
,Webhook Sink
,SIFT Comparison
,Instance Segmentation Model
,Slack Notification
,Stitch OCR Detections
,Pixelate Visualization
,Relative Static Crop
,Twilio SMS Notification
,VLM as Classifier
,Roboflow Dataset Upload
,Google Gemini
,Model Comparison Visualization
,Halo Visualization
,Crop Visualization
,Image Blur
,Distance Measurement
,Circle Visualization
,Keypoint Detection Model
,Image Preprocessing
,Background Color Visualization
,Pixel Color Count
,Florence-2 Model
,Bounding Box Visualization
,Florence-2 Model
,Local File Sink
,Image Slicer
,LMM For Classification
,Stitch Images
,Stability AI Image Generation
,Image Threshold
,OCR Model
,LMM
,Keypoint Visualization
,Email Notification
,Color Visualization
,Single-Label Classification Model
,CSV Formatter
,Image Convert Grayscale
,OpenAI
- outputs:
Slack Notification
,Image Slicer
,Stitch OCR Detections
,Pixelate Visualization
,Perspective Correction
,Instance Segmentation Model
,Object Detection Model
,Object Detection Model
,Twilio SMS Notification
,Detections Consensus
,SIFT Comparison
,Detection Offset
,Keypoint Detection Model
,Grid Visualization
,Ellipse Visualization
,Halo Visualization
,Image Contours
,Crop Visualization
,Absolute Static Crop
,Byte Tracker
,Image Blur
,Trace Visualization
,Circle Visualization
,Keypoint Detection Model
,Image Preprocessing
,Dot Visualization
,Identify Outliers
,Identify Changes
,Pixel Color Count
,Classification Label Visualization
,Corner Visualization
,Byte Tracker
,Byte Tracker
,Bounding Box Visualization
,Image Slicer
,Reference Path Visualization
,Label Visualization
,Detections Stabilizer
,Mask Visualization
,Stitch Images
,Triangle Visualization
,Line Counter Visualization
,Image Threshold
,Dynamic Zone
,Keypoint Visualization
,Dominant Color
,Email Notification
,Color Visualization
,Blur Visualization
,Anthropic Claude
,Webhook Sink
,SIFT Comparison
,Instance Segmentation Model
,Polygon Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Pixel Color Count
in version v1
has.
Bindings
-
input
-
output
matching_pixels_count
(integer
): Integer value.
Example JSON definition of step Pixel Color Count
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/pixel_color_count@v1",
"image": "$inputs.image",
"target_color": "#431112",
"tolerance": 10
}