Pixelate Visualization¶
Class: PixelateVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.pixelate.v1.PixelateVisualizationBlockV1
The PixelateVisualization
block pixelates detected
objects in an image using Supervision's sv.PixelateAnnotator
.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/pixelate_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
pixel_size |
int |
Size of the pixelation.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Pixelate Visualization
in version v1
.
- inputs:
Byte Tracker
,Polygon Zone Visualization
,VLM as Classifier
,Identify Outliers
,Time in Zone
,Distance Measurement
,Dot Visualization
,Morphological Transformation
,Blur Visualization
,Perspective Correction
,Corner Visualization
,Pixel Color Count
,PTZ Tracking (ONVIF)
.md),Grid Visualization
,Image Threshold
,Halo Visualization
,Keypoint Detection Model
,Detections Combine
,Detection Offset
,EasyOCR
,Byte Tracker
,Line Counter Visualization
,VLM as Detector
,Stability AI Outpainting
,VLM as Classifier
,Twilio SMS Notification
,Keypoint Detection Model
,Identify Changes
,Google Vision OCR
,Camera Focus
,Roboflow Dataset Upload
,SIFT
,Email Notification
,Instance Segmentation Model
,Image Slicer
,Image Convert Grayscale
,Keypoint Visualization
,Template Matching
,OCR Model
,Detections Stabilizer
,Bounding Box Visualization
,Instance Segmentation Model
,Line Counter
,Reference Path Visualization
,Dynamic Crop
,Roboflow Dataset Upload
,Mask Visualization
,Image Preprocessing
,Background Color Visualization
,Local File Sink
,Webhook Sink
,Camera Calibration
,Depth Estimation
,Image Slicer
,QR Code Generator
,Detections Stitch
,SIFT Comparison
,Trace Visualization
,Time in Zone
,Velocity
,Object Detection Model
,Detections Transformation
,Contrast Equalization
,Byte Tracker
,Overlap Filter
,Crop Visualization
,Stability AI Image Generation
,Moondream2
,SIFT Comparison
,Roboflow Custom Metadata
,Object Detection Model
,Model Comparison Visualization
,Pixelate Visualization
,Dynamic Zone
,Model Monitoring Inference Aggregator
,Gaze Detection
,Line Counter
,Time in Zone
,Relative Static Crop
,Image Contours
,Polygon Visualization
,Slack Notification
,JSON Parser
,Path Deviation
,Triangle Visualization
,Detections Filter
,YOLO-World Model
,Classification Label Visualization
,Detections Classes Replacement
,Bounding Rectangle
,Circle Visualization
,Image Blur
,Label Visualization
,VLM as Detector
,Absolute Static Crop
,Stability AI Inpainting
,Icon Visualization
,Ellipse Visualization
,Color Visualization
,Detections Merge
,Path Deviation
,Detections Consensus
,Stitch Images
,Segment Anything 2 Model
- outputs:
VLM as Classifier
,LMM For Classification
,Polygon Zone Visualization
,Dot Visualization
,Morphological Transformation
,Perspective Correction
,Blur Visualization
,Clip Comparison
,Corner Visualization
,LMM
,Pixel Color Count
,Florence-2 Model
,Image Threshold
,Florence-2 Model
,Halo Visualization
,OpenAI
,Keypoint Detection Model
,Multi-Label Classification Model
,CogVLM
,EasyOCR
,Byte Tracker
,Line Counter Visualization
,Perception Encoder Embedding Model
,VLM as Detector
,Stability AI Outpainting
,VLM as Classifier
,Keypoint Detection Model
,Google Vision OCR
,CLIP Embedding Model
,Camera Focus
,Roboflow Dataset Upload
,SIFT
,Instance Segmentation Model
,Clip Comparison
,Image Slicer
,Image Convert Grayscale
,Keypoint Visualization
,Template Matching
,OCR Model
,Llama 3.2 Vision
,Bounding Box Visualization
,Detections Stabilizer
,Instance Segmentation Model
,Reference Path Visualization
,Dynamic Crop
,Roboflow Dataset Upload
,Mask Visualization
,Image Preprocessing
,Qwen2.5-VL
,Background Color Visualization
,OpenAI
,Camera Calibration
,Depth Estimation
,Image Slicer
,Detections Stitch
,Dominant Color
,Trace Visualization
,Object Detection Model
,Contrast Equalization
,Buffer
,Crop Visualization
,Stability AI Image Generation
,Stitch Images
,SmolVLM2
,SIFT Comparison
,Object Detection Model
,Model Comparison Visualization
,Pixelate Visualization
,Gaze Detection
,Anthropic Claude
,Time in Zone
,QR Code Detection
,Relative Static Crop
,Polygon Visualization
,Barcode Detection
,Image Contours
,OpenAI
,Triangle Visualization
,YOLO-World Model
,Single-Label Classification Model
,Classification Label Visualization
,Circle Visualization
,Image Blur
,Label Visualization
,VLM as Detector
,Google Gemini
,Multi-Label Classification Model
,Stability AI Inpainting
,Absolute Static Crop
,Icon Visualization
,Ellipse Visualization
,Color Visualization
,Single-Label Classification Model
,Moondream2
,Segment Anything 2 Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Pixelate Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions
(Union[object_detection_prediction
,instance_segmentation_prediction
,keypoint_detection_prediction
]): Model predictions to visualize..pixel_size
(integer
): Size of the pixelation..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Pixelate Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/pixelate_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.object_detection_model.predictions",
"pixel_size": 20
}