Polygon Visualization¶
Class: PolygonVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.polygon.v1.PolygonVisualizationBlockV1
The PolygonVisualization
block uses a detections from an
instance segmentation to draw polygons around objects using
sv.PolygonAnnotator
.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/polygon_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
color_palette |
str |
Select a color palette for the visualised elements.. | ✅ |
palette_size |
int |
Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes.. | ✅ |
custom_colors |
List[str] |
Define a list of custom colors for bounding boxes in HEX format.. | ✅ |
color_axis |
str |
Choose how bounding box colors are assigned.. | ✅ |
thickness |
int |
Thickness of the outline in pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Polygon Visualization
in version v1
.
- inputs:
Grid Visualization
,Image Blur
,Image Preprocessing
,Image Slicer
,OpenAI
,Instance Segmentation Model
,Dynamic Crop
,Time in Zone
,Absolute Static Crop
,Roboflow Dataset Upload
,Color Visualization
,LMM
,Corner Visualization
,Google Gemini
,Depth Estimation
,Stability AI Outpainting
,Keypoint Visualization
,PTZ Tracking (ONVIF)
.md),Trace Visualization
,Clip Comparison
,Google Vision OCR
,Email Notification
,Keypoint Detection Model
,Time in Zone
,Model Comparison Visualization
,Single-Label Classification Model
,Dimension Collapse
,Mask Visualization
,Image Slicer
,Model Monitoring Inference Aggregator
,Clip Comparison
,Size Measurement
,Multi-Label Classification Model
,Buffer
,Detections Consensus
,Image Threshold
,Contrast Equalization
,Line Counter
,OpenAI
,Detections Filter
,Path Deviation
,Morphological Transformation
,Classification Label Visualization
,Velocity
,Relative Static Crop
,Time in Zone
,Path Deviation
,Camera Calibration
,Dynamic Zone
,Florence-2 Model
,Blur Visualization
,Stitch Images
,Roboflow Dataset Upload
,JSON Parser
,Triangle Visualization
,Perspective Correction
,SIFT
,Icon Visualization
,Label Visualization
,Stability AI Image Generation
,Detections Transformation
,Stitch OCR Detections
,Pixel Color Count
,CogVLM
,Ellipse Visualization
,SIFT Comparison
,Detections Stabilizer
,Llama 3.2 Vision
,VLM as Detector
,Line Counter Visualization
,Florence-2 Model
,Line Counter
,SIFT Comparison
,Slack Notification
,Local File Sink
,Distance Measurement
,Image Convert Grayscale
,Detection Offset
,Roboflow Custom Metadata
,Detections Combine
,Twilio SMS Notification
,Background Color Visualization
,VLM as Classifier
,QR Code Generator
,Segment Anything 2 Model
,Identify Changes
,Polygon Zone Visualization
,Anthropic Claude
,VLM as Detector
,Detections Stitch
,Polygon Visualization
,Camera Focus
,Bounding Rectangle
,Dot Visualization
,LMM For Classification
,Template Matching
,Detections Classes Replacement
,Instance Segmentation Model
,Identify Outliers
,Circle Visualization
,Bounding Box Visualization
,Image Contours
,OpenAI
,Object Detection Model
,OCR Model
,Halo Visualization
,Reference Path Visualization
,VLM as Classifier
,CSV Formatter
,Pixelate Visualization
,Webhook Sink
,EasyOCR
,Stability AI Inpainting
,Crop Visualization
- outputs:
Image Blur
,Image Preprocessing
,Image Slicer
,OpenAI
,Instance Segmentation Model
,Dynamic Crop
,Multi-Label Classification Model
,Roboflow Dataset Upload
,LMM
,Moondream2
,Absolute Static Crop
,Corner Visualization
,Color Visualization
,Google Gemini
,Depth Estimation
,Keypoint Detection Model
,Stability AI Outpainting
,Keypoint Visualization
,Trace Visualization
,Clip Comparison
,Google Vision OCR
,Keypoint Detection Model
,Single-Label Classification Model
,Time in Zone
,Model Comparison Visualization
,YOLO-World Model
,Mask Visualization
,Image Slicer
,Clip Comparison
,Multi-Label Classification Model
,Buffer
,Image Threshold
,Contrast Equalization
,OpenAI
,Barcode Detection
,Morphological Transformation
,Classification Label Visualization
,Relative Static Crop
,Camera Calibration
,Florence-2 Model
,Stitch Images
,Blur Visualization
,Roboflow Dataset Upload
,Qwen2.5-VL
,Triangle Visualization
,Perspective Correction
,SIFT
,Icon Visualization
,QR Code Detection
,Pixel Color Count
,Stability AI Image Generation
,Label Visualization
,Object Detection Model
,Llama 3.2 Vision
,Ellipse Visualization
,CogVLM
,Detections Stabilizer
,VLM as Detector
,SmolVLM2
,Single-Label Classification Model
,Line Counter Visualization
,Florence-2 Model
,SIFT Comparison
,Image Convert Grayscale
,Gaze Detection
,Perception Encoder Embedding Model
,Background Color Visualization
,VLM as Classifier
,Segment Anything 2 Model
,Polygon Zone Visualization
,Anthropic Claude
,VLM as Detector
,Detections Stitch
,Byte Tracker
,Polygon Visualization
,Camera Focus
,Dot Visualization
,LMM For Classification
,Template Matching
,CLIP Embedding Model
,Instance Segmentation Model
,Circle Visualization
,Bounding Box Visualization
,Image Contours
,OpenAI
,Object Detection Model
,OCR Model
,Dominant Color
,Halo Visualization
,Reference Path Visualization
,VLM as Classifier
,Pixelate Visualization
,EasyOCR
,Stability AI Inpainting
,Crop Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Polygon Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions
(instance_segmentation_prediction
): Predictions.color_palette
(string
): Select a color palette for the visualised elements..palette_size
(integer
): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..custom_colors
(list_of_values
): Define a list of custom colors for bounding boxes in HEX format..color_axis
(string
): Choose how bounding box colors are assigned..thickness
(integer
): Thickness of the outline in pixels..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Polygon Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/polygon_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.instance_segmentation_model.predictions",
"color_palette": "DEFAULT",
"palette_size": 10,
"custom_colors": [
"#FF0000",
"#00FF00",
"#0000FF"
],
"color_axis": "CLASS",
"thickness": 2
}