Polygon Visualization¶
Class: PolygonVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.polygon.v1.PolygonVisualizationBlockV1
The PolygonVisualization block uses a detections from an
instance segmentation to draw polygons around objects using
sv.PolygonAnnotator.
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/polygon_visualization@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
color_palette |
str |
Select a color palette for the visualised elements.. | ✅ |
palette_size |
int |
Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes.. | ✅ |
custom_colors |
List[str] |
Define a list of custom colors for bounding boxes in HEX format.. | ✅ |
color_axis |
str |
Choose how bounding box colors are assigned.. | ✅ |
thickness |
int |
Thickness of the outline in pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Polygon Visualization in version v1.
- inputs:
QR Code Generator,Image Convert Grayscale,Google Gemini,Velocity,SIFT Comparison,Blur Visualization,Detection Offset,SIFT,Bounding Box Visualization,Stability AI Outpainting,Trace Visualization,Instance Segmentation Model,Pixel Color Count,Ellipse Visualization,Model Comparison Visualization,OpenAI,Dimension Collapse,Triangle Visualization,SAM 3,Distance Measurement,Stability AI Image Generation,Path Deviation,VLM as Detector,Florence-2 Model,Email Notification,Google Gemini,Segment Anything 2 Model,Camera Focus,VLM as Classifier,Corner Visualization,Color Visualization,Twilio SMS/MMS Notification,Image Slicer,OpenAI,Line Counter,Buffer,Detections Transformation,SAM 3,Dot Visualization,Roboflow Custom Metadata,Image Threshold,Model Monitoring Inference Aggregator,Classification Label Visualization,Time in Zone,OCR Model,Roboflow Dataset Upload,Mask Visualization,Detections List Roll-Up,Pixelate Visualization,Line Counter,Keypoint Detection Model,Detections Consensus,Size Measurement,Webhook Sink,Stability AI Inpainting,Template Matching,Line Counter Visualization,Crop Visualization,OpenAI,Llama 3.2 Vision,Icon Visualization,Clip Comparison,Time in Zone,Background Subtraction,LMM For Classification,SAM 3,CogVLM,Roboflow Dataset Upload,Detections Stitch,Detections Combine,Seg Preview,Dynamic Crop,Identify Changes,Camera Focus,Slack Notification,Keypoint Visualization,Polygon Visualization,Anthropic Claude,Local File Sink,Polygon Zone Visualization,Halo Visualization,LMM,Time in Zone,Circle Visualization,Detections Stabilizer,Google Vision OCR,Motion Detection,Clip Comparison,Detections Classes Replacement,Anthropic Claude,Detections Filter,Object Detection Model,Instance Segmentation Model,Perspective Correction,CSV Formatter,Reference Path Visualization,Stitch OCR Detections,Camera Calibration,Image Blur,VLM as Detector,Morphological Transformation,Label Visualization,Background Color Visualization,Path Deviation,Dynamic Zone,Absolute Static Crop,PTZ Tracking (ONVIF).md),Grid Visualization,Contrast Equalization,Image Preprocessing,Google Gemini,Relative Static Crop,OpenAI,Image Contours,Stitch Images,JSON Parser,Bounding Rectangle,SIFT Comparison,Depth Estimation,Twilio SMS Notification,Single-Label Classification Model,VLM as Classifier,Florence-2 Model,Multi-Label Classification Model,Identify Outliers,EasyOCR,Image Slicer,Email Notification - outputs:
Detections Stitch,Seg Preview,Byte Tracker,Qwen3-VL,YOLO-World Model,Google Gemini,Image Convert Grayscale,QR Code Detection,Dynamic Crop,Blur Visualization,SIFT,Stability AI Outpainting,Bounding Box Visualization,Camera Focus,Keypoint Visualization,Trace Visualization,Instance Segmentation Model,Polygon Visualization,Dominant Color,Pixel Color Count,Ellipse Visualization,OpenAI,Model Comparison Visualization,Anthropic Claude,Triangle Visualization,Qwen2.5-VL,SAM 3,Polygon Zone Visualization,Halo Visualization,LMM,Stability AI Image Generation,Time in Zone,VLM as Detector,Florence-2 Model,CLIP Embedding Model,Single-Label Classification Model,Detections Stabilizer,Email Notification,Circle Visualization,Google Vision OCR,Google Gemini,Motion Detection,Clip Comparison,Camera Focus,Anthropic Claude,Object Detection Model,Instance Segmentation Model,Perspective Correction,Perception Encoder Embedding Model,VLM as Classifier,Reference Path Visualization,Corner Visualization,Color Visualization,Twilio SMS/MMS Notification,EasyOCR,Multi-Label Classification Model,Image Slicer,OpenAI,Image Blur,Buffer,Camera Calibration,SmolVLM2,VLM as Detector,SAM 3,Dot Visualization,Image Threshold,Morphological Transformation,Label Visualization,Background Color Visualization,OCR Model,Classification Label Visualization,Roboflow Dataset Upload,Keypoint Detection Model,Mask Visualization,Pixelate Visualization,Absolute Static Crop,Keypoint Detection Model,Moondream2,Image Preprocessing,Contrast Equalization,Google Gemini,Stability AI Inpainting,Barcode Detection,Template Matching,Line Counter Visualization,OpenAI,Image Contours,Crop Visualization,Relative Static Crop,Stitch Images,OpenAI,Llama 3.2 Vision,Icon Visualization,Clip Comparison,SIFT Comparison,Gaze Detection,Depth Estimation,Single-Label Classification Model,VLM as Classifier,Florence-2 Model,Background Subtraction,LMM For Classification,SAM 3,Object Detection Model,Multi-Label Classification Model,Segment Anything 2 Model,CogVLM,Image Slicer,Roboflow Dataset Upload
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Polygon Visualization in version v1 has.
Bindings
-
input
image(image): The image to visualize on..copy_image(boolean): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions(Union[instance_segmentation_prediction,rle_instance_segmentation_prediction]): Predictions.color_palette(string): Select a color palette for the visualised elements..palette_size(integer): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..custom_colors(list_of_values): Define a list of custom colors for bounding boxes in HEX format..color_axis(string): Choose how bounding box colors are assigned..thickness(integer): Thickness of the outline in pixels..
-
output
image(image): Image in workflows.
Example JSON definition of step Polygon Visualization in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/polygon_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.instance_segmentation_model.predictions",
"color_palette": "DEFAULT",
"palette_size": 10,
"custom_colors": [
"#FF0000",
"#00FF00",
"#0000FF"
],
"color_axis": "CLASS",
"thickness": 2
}