Reference Path Visualization¶
Class: ReferencePathVisualizationBlockV1
The Reference Path Visualization block draws reference path in the image. To be used in combination with Path deviation block - to display the reference path.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/reference_path_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
reference_path |
List[Any] |
Reference path in a format [(x1, y1), (x2, y2), (x3, y3), ...]. | ✅ |
color |
str |
Color of the zone.. | ✅ |
thickness |
int |
Thickness of the lines in pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Reference Path Visualization
in version v1
.
- inputs:
Keypoint Visualization
,Google Gemini
,Keypoint Detection Model
,Image Contours
,Circle Visualization
,Image Threshold
,Absolute Static Crop
,Perspective Correction
,Color Visualization
,Instance Segmentation Model
,Reference Path Visualization
,Stitch Images
,Image Blur
,Local File Sink
,Blur Visualization
,PTZ Tracking (ONVIF)
.md),Florence-2 Model
,Relative Static Crop
,Halo Visualization
,Clip Comparison
,Stability AI Inpainting
,SIFT Comparison
,Icon Visualization
,Roboflow Custom Metadata
,Dimension Collapse
,Polygon Zone Visualization
,Depth Estimation
,Identify Outliers
,Template Matching
,Stability AI Image Generation
,Dynamic Zone
,Dynamic Crop
,Grid Visualization
,Crop Visualization
,Stitch OCR Detections
,Detections Consensus
,VLM as Classifier
,Camera Calibration
,VLM as Classifier
,Pixel Color Count
,QR Code Generator
,SIFT
,SIFT Comparison
,Size Measurement
,Camera Focus
,Model Comparison Visualization
,Twilio SMS Notification
,Llama 3.2 Vision
,Triangle Visualization
,Line Counter Visualization
,Clip Comparison
,Email Notification
,LMM
,Roboflow Dataset Upload
,CSV Formatter
,Image Slicer
,Mask Visualization
,Single-Label Classification Model
,OCR Model
,Pixelate Visualization
,JSON Parser
,Webhook Sink
,Object Detection Model
,Slack Notification
,Dot Visualization
,Image Slicer
,Roboflow Dataset Upload
,Classification Label Visualization
,OpenAI
,Model Monitoring Inference Aggregator
,VLM as Detector
,Polygon Visualization
,OpenAI
,Buffer
,LMM For Classification
,Stability AI Outpainting
,Trace Visualization
,Line Counter
,Bounding Box Visualization
,Distance Measurement
,Image Preprocessing
,Multi-Label Classification Model
,Image Convert Grayscale
,Google Vision OCR
,Label Visualization
,Line Counter
,CogVLM
,Corner Visualization
,Background Color Visualization
,Florence-2 Model
,Identify Changes
,VLM as Detector
,Ellipse Visualization
,OpenAI
,Anthropic Claude
- outputs:
Google Gemini
,Keypoint Visualization
,Keypoint Detection Model
,Detections Stabilizer
,Image Contours
,Circle Visualization
,Image Threshold
,Absolute Static Crop
,Perspective Correction
,Color Visualization
,Gaze Detection
,QR Code Detection
,Instance Segmentation Model
,Reference Path Visualization
,Stitch Images
,Image Blur
,Florence-2 Model
,Barcode Detection
,Blur Visualization
,Keypoint Detection Model
,Relative Static Crop
,Clip Comparison
,Stability AI Inpainting
,SIFT Comparison
,Icon Visualization
,SmolVLM2
,Polygon Zone Visualization
,Depth Estimation
,Instance Segmentation Model
,Template Matching
,Stability AI Image Generation
,Dynamic Crop
,Crop Visualization
,Time in Zone
,VLM as Classifier
,Single-Label Classification Model
,Camera Calibration
,Segment Anything 2 Model
,Perception Encoder Embedding Model
,VLM as Classifier
,Pixel Color Count
,Dominant Color
,SIFT
,Camera Focus
,Model Comparison Visualization
,Object Detection Model
,CLIP Embedding Model
,Llama 3.2 Vision
,Line Counter Visualization
,Triangle Visualization
,Clip Comparison
,Multi-Label Classification Model
,LMM
,Roboflow Dataset Upload
,Image Slicer
,Mask Visualization
,Byte Tracker
,Single-Label Classification Model
,OCR Model
,Pixelate Visualization
,Qwen2.5-VL
,Object Detection Model
,Dot Visualization
,Image Slicer
,Roboflow Dataset Upload
,YOLO-World Model
,OpenAI
,Classification Label Visualization
,VLM as Detector
,Polygon Visualization
,OpenAI
,Buffer
,Ellipse Visualization
,LMM For Classification
,Stability AI Outpainting
,Trace Visualization
,Moondream2
,Bounding Box Visualization
,Image Preprocessing
,Multi-Label Classification Model
,Image Convert Grayscale
,Google Vision OCR
,Label Visualization
,CogVLM
,Corner Visualization
,Detections Stitch
,Background Color Visualization
,Florence-2 Model
,VLM as Detector
,Halo Visualization
,OpenAI
,Anthropic Claude
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Reference Path Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..reference_path
(list_of_values
): Reference path in a format [(x1, y1), (x2, y2), (x3, y3), ...].color
(string
): Color of the zone..thickness
(integer
): Thickness of the lines in pixels..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Reference Path Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/reference_path_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"reference_path": "$inputs.expected_path",
"color": "WHITE",
"thickness": 2
}