Reference Path Visualization¶
Class: ReferencePathVisualizationBlockV1
Draw a static reference path on an image to visualize an expected or ideal route, displaying a predefined polyline path that can be compared against actual object trajectories for path deviation analysis and route compliance monitoring.
How This Block Works¶
This block takes an image and reference path coordinates (a list of points defining a path) and draws a static polyline path representing an expected route or ideal trajectory. The block:
- Takes an image and reference path coordinates (a list of points: [(x1, y1), (x2, y2), (x3, y3), ...]) as input
- Converts the coordinate list into a polyline path connecting the points in sequence
- Draws the reference path as a polyline using the specified color and thickness
- Returns an annotated image with the reference path overlaid on the original image
The block visualizes a static, predefined reference path that represents where objects should ideally move or what route they should follow. Unlike Trace Visualization (which draws dynamic paths based on actual tracked object movement), Reference Path Visualization draws a fixed path that remains constant. This reference path serves as a baseline for comparison, allowing you to visualize the expected route alongside actual object trajectories. The path is drawn as a continuous line connecting all the specified points, creating a visual guide for route compliance, path deviation analysis, or navigation workflows. This block is commonly used with Path Deviation analytics blocks to visually display the reference path that actual object trajectories will be compared against.
Common Use Cases¶
- Path Deviation Visualization: Visualize a reference path alongside actual object trajectories to compare expected routes against actual movement for path deviation detection, route compliance monitoring, or navigation validation workflows
- Route Planning and Navigation: Display predefined routes, navigation paths, or expected travel routes that objects should follow for route planning, navigation systems, or waypoint visualization applications
- Compliance and Safety Monitoring: Visualize expected paths for safety monitoring, compliance workflows, or route validation where objects need to follow specific paths (e.g., vehicles on designated lanes, robots on expected routes)
- Industrial and Logistics Applications: Display reference paths for conveyor systems, automated guided vehicles (AGVs), or manufacturing workflows where objects must follow predefined routes for process control or quality assurance
- Security and Access Control: Visualize expected movement paths for security monitoring, access control, or surveillance workflows where deviations from expected routes need to be identified
- Training and Documentation: Display reference paths in training materials, documentation, or demonstrations to show expected object behavior, routes, or movement patterns for educational or reference purposes
Connecting to Other Blocks¶
The annotated image from this block can be connected to:
- Path Deviation analytics blocks to compare tracked object trajectories against the visualized reference path for deviation analysis
- Other visualization blocks (e.g., Trace Visualization, Bounding Box Visualization, Label Visualization) to combine reference path visualization with actual object tracking visualizations for comprehensive path comparison
- Tracking blocks (e.g., Byte Tracker) where the reference path can serve as a visual baseline for comparing actual tracked object trajectories
- Data storage blocks (e.g., Local File Sink, CSV Formatter, Roboflow Dataset Upload) to save images with reference paths for documentation, reporting, or analysis
- Webhook blocks to send visualized results with reference paths to external systems, APIs, or web applications for display in dashboards or monitoring tools
- Notification blocks (e.g., Email Notification, Slack Notification) to send annotated images with reference paths as visual evidence in alerts or reports
- Video output blocks to create annotated video streams or recordings with reference paths for live monitoring, path visualization, or post-processing analysis
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/reference_path_visualization@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
reference_path |
List[Any] |
Reference path coordinates in the format [(x1, y1), (x2, y2), (x3, y3), ...] defining the expected or ideal route. The path is drawn as a polyline connecting these points in sequence, creating a continuous line representing the reference trajectory. Typically connected from Path Deviation analytics blocks or defined manually as an expected route. Must contain at least two points to form a valid path.. | ✅ |
color |
str |
Color of the reference path. Can be specified as a color name (e.g., 'WHITE', 'GREEN', 'BLUE'), hex color code (e.g., '#5bb573', '#FFFFFF'), or RGB format (e.g., 'rgb(91, 181, 115)'). The reference path is drawn in this color with the specified thickness.. | ✅ |
thickness |
int |
Thickness of the reference path line in pixels. Controls how thick the reference path appears. Higher values create thicker, more visible paths, while lower values create thinner, more subtle paths. Must be greater than or equal to zero. Typical values range from 1 to 5 pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Reference Path Visualization in version v1.
- inputs:
Contrast Equalization,Llama 3.2 Vision,Clip Comparison,SIFT Comparison,Anthropic Claude,VLM as Detector,Local File Sink,Polygon Visualization,QR Code Generator,Image Blur,SIFT Comparison,Email Notification,Roboflow Dataset Upload,Text Display,Motion Detection,Model Comparison Visualization,Camera Focus,SIFT,PTZ Tracking (ONVIF).md),LMM,Google Vision OCR,Mask Visualization,Anthropic Claude,Relative Static Crop,Circle Visualization,EasyOCR,Pixelate Visualization,Stability AI Inpainting,Reference Path Visualization,VLM as Classifier,Instance Segmentation Model,Perspective Correction,Ellipse Visualization,Crop Visualization,Halo Visualization,Image Threshold,Keypoint Detection Model,CSV Formatter,Florence-2 Model,Twilio SMS Notification,Image Convert Grayscale,Corner Visualization,Image Preprocessing,Line Counter,Dynamic Zone,Detections List Roll-Up,Identify Changes,Icon Visualization,Background Subtraction,Image Contours,Image Slicer,Detections Consensus,Depth Estimation,Multi-Label Classification Model,Pixel Color Count,Stitch Images,Dynamic Crop,Bounding Box Visualization,VLM as Classifier,Model Monitoring Inference Aggregator,Detection Event Log,Line Counter Visualization,Blur Visualization,Morphological Transformation,Camera Calibration,Polygon Zone Visualization,Single-Label Classification Model,Email Notification,Line Counter,Stability AI Image Generation,Keypoint Visualization,OCR Model,Roboflow Custom Metadata,Google Gemini,OpenAI,Distance Measurement,Camera Focus,Trace Visualization,OpenAI,CogVLM,Color Visualization,Absolute Static Crop,Image Slicer,Size Measurement,Dot Visualization,Identify Outliers,Label Visualization,Slack Notification,Buffer,Florence-2 Model,Google Gemini,JSON Parser,Google Gemini,Grid Visualization,Object Detection Model,LMM For Classification,OpenAI,Stitch OCR Detections,Template Matching,Dimension Collapse,OpenAI,Classification Label Visualization,Background Color Visualization,Stability AI Outpainting,Roboflow Dataset Upload,Stitch OCR Detections,Twilio SMS/MMS Notification,Anthropic Claude,Clip Comparison,Triangle Visualization,VLM as Detector,Webhook Sink - outputs:
Contrast Equalization,Llama 3.2 Vision,Clip Comparison,Anthropic Claude,VLM as Detector,Polygon Visualization,Image Blur,SIFT Comparison,SmolVLM2,CLIP Embedding Model,Roboflow Dataset Upload,Text Display,Motion Detection,SIFT,Model Comparison Visualization,Camera Focus,Moondream2,LMM,Qwen3-VL,Single-Label Classification Model,Google Vision OCR,SAM 3,Anthropic Claude,Relative Static Crop,Mask Visualization,Object Detection Model,Keypoint Detection Model,Circle Visualization,Seg Preview,EasyOCR,Pixelate Visualization,Stability AI Inpainting,Multi-Label Classification Model,Time in Zone,VLM as Classifier,Reference Path Visualization,Instance Segmentation Model,Perspective Correction,Halo Visualization,Image Threshold,Ellipse Visualization,Crop Visualization,Keypoint Detection Model,Florence-2 Model,Detections Stabilizer,Image Convert Grayscale,Perception Encoder Embedding Model,Corner Visualization,Image Preprocessing,Barcode Detection,Icon Visualization,SAM 3,Background Subtraction,Segment Anything 2 Model,Qwen2.5-VL,Image Slicer,Image Contours,Depth Estimation,Multi-Label Classification Model,Pixel Color Count,Detections Stitch,Stitch Images,QR Code Detection,Dynamic Crop,Bounding Box Visualization,Anthropic Claude,VLM as Classifier,YOLO-World Model,Instance Segmentation Model,Line Counter Visualization,Blur Visualization,Morphological Transformation,Camera Calibration,Polygon Zone Visualization,Single-Label Classification Model,Email Notification,Stability AI Image Generation,Dominant Color,OCR Model,Keypoint Visualization,Google Gemini,OpenAI,Camera Focus,Trace Visualization,CogVLM,OpenAI,Image Slicer,Absolute Static Crop,Color Visualization,Dot Visualization,Label Visualization,Buffer,Florence-2 Model,Google Gemini,Google Gemini,Object Detection Model,LMM For Classification,Template Matching,OpenAI,OpenAI,Classification Label Visualization,Background Color Visualization,Stability AI Outpainting,Byte Tracker,SAM 3,Twilio SMS/MMS Notification,Roboflow Dataset Upload,Gaze Detection,Clip Comparison,Triangle Visualization,VLM as Detector
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Reference Path Visualization in version v1 has.
Bindings
-
input
image(image): The image to visualize on..copy_image(boolean): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..reference_path(list_of_values): Reference path coordinates in the format [(x1, y1), (x2, y2), (x3, y3), ...] defining the expected or ideal route. The path is drawn as a polyline connecting these points in sequence, creating a continuous line representing the reference trajectory. Typically connected from Path Deviation analytics blocks or defined manually as an expected route. Must contain at least two points to form a valid path..color(string): Color of the reference path. Can be specified as a color name (e.g., 'WHITE', 'GREEN', 'BLUE'), hex color code (e.g., '#5bb573', '#FFFFFF'), or RGB format (e.g., 'rgb(91, 181, 115)'). The reference path is drawn in this color with the specified thickness..thickness(integer): Thickness of the reference path line in pixels. Controls how thick the reference path appears. Higher values create thicker, more visible paths, while lower values create thinner, more subtle paths. Must be greater than or equal to zero. Typical values range from 1 to 5 pixels..
-
output
image(image): Image in workflows.
Example JSON definition of step Reference Path Visualization in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/reference_path_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"reference_path": "$inputs.expected_path",
"color": "WHITE",
"thickness": 2
}