Reference Path Visualization¶
Class: ReferencePathVisualizationBlockV1
The Reference Path Visualization block draws reference path in the image. To be used in combination with Path deviation block - to display the reference path.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/reference_path_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
reference_path |
List[Any] |
Reference path in a format [(x1, y1), (x2, y2), (x3, y3), ...]. | ✅ |
color |
str |
Color of the zone.. | ✅ |
thickness |
int |
Thickness of the lines in pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Reference Path Visualization
in version v1
.
- inputs:
Image Slicer
,Stability AI Inpainting
,Clip Comparison
,Perspective Correction
,Object Detection Model
,Roboflow Custom Metadata
,SIFT Comparison
,Grid Visualization
,Ellipse Visualization
,SIFT
,VLM as Detector
,CogVLM
,Image Contours
,OpenAI
,Absolute Static Crop
,Camera Focus
,Polygon Visualization
,Trace Visualization
,Multi-Label Classification Model
,VLM as Detector
,Dot Visualization
,Clip Comparison
,Google Vision OCR
,Identify Outliers
,Polygon Zone Visualization
,Roboflow Dataset Upload
,Identify Changes
,VLM as Classifier
,Classification Label Visualization
,Corner Visualization
,Llama 3.2 Vision
,Dynamic Crop
,Reference Path Visualization
,Line Counter
,Label Visualization
,Mask Visualization
,Triangle Visualization
,Line Counter Visualization
,Template Matching
,Dynamic Zone
,Model Monitoring Inference Aggregator
,Blur Visualization
,Line Counter
,Anthropic Claude
,Webhook Sink
,SIFT Comparison
,Instance Segmentation Model
,Slack Notification
,Stitch OCR Detections
,Pixelate Visualization
,Relative Static Crop
,Detections Consensus
,Twilio SMS Notification
,Dimension Collapse
,VLM as Classifier
,Roboflow Dataset Upload
,Google Gemini
,Model Comparison Visualization
,Halo Visualization
,JSON Parser
,Crop Visualization
,Image Blur
,Distance Measurement
,Circle Visualization
,Buffer
,Keypoint Detection Model
,Image Preprocessing
,Background Color Visualization
,Pixel Color Count
,Size Measurement
,Florence-2 Model
,Bounding Box Visualization
,Florence-2 Model
,Local File Sink
,Image Slicer
,LMM For Classification
,Stitch Images
,Stability AI Image Generation
,Image Threshold
,OCR Model
,LMM
,Keypoint Visualization
,Email Notification
,Color Visualization
,Single-Label Classification Model
,CSV Formatter
,Image Convert Grayscale
,OpenAI
- outputs:
Segment Anything 2 Model
,Image Slicer
,Stability AI Inpainting
,Clip Comparison
,Perspective Correction
,Object Detection Model
,Object Detection Model
,SIFT Comparison
,CogVLM
,Ellipse Visualization
,SIFT
,VLM as Detector
,Image Contours
,Multi-Label Classification Model
,OpenAI
,Absolute Static Crop
,Camera Focus
,Trace Visualization
,CLIP Embedding Model
,Multi-Label Classification Model
,VLM as Detector
,Dot Visualization
,Google Vision OCR
,Clip Comparison
,Polygon Zone Visualization
,Gaze Detection
,Roboflow Dataset Upload
,VLM as Classifier
,Classification Label Visualization
,Corner Visualization
,Llama 3.2 Vision
,Dynamic Crop
,Reference Path Visualization
,Detections Stabilizer
,Label Visualization
,Mask Visualization
,Triangle Visualization
,Template Matching
,Line Counter Visualization
,Dominant Color
,Barcode Detection
,Blur Visualization
,Anthropic Claude
,Instance Segmentation Model
,Time in Zone
,Instance Segmentation Model
,Pixelate Visualization
,OpenAI
,Relative Static Crop
,VLM as Classifier
,Keypoint Detection Model
,Roboflow Dataset Upload
,Google Gemini
,Model Comparison Visualization
,Halo Visualization
,Crop Visualization
,Qwen2.5-VL
,Image Blur
,Circle Visualization
,Buffer
,Keypoint Detection Model
,Image Preprocessing
,Background Color Visualization
,QR Code Detection
,Pixel Color Count
,Florence-2 Model
,Single-Label Classification Model
,Bounding Box Visualization
,Byte Tracker
,Florence-2 Model
,Image Slicer
,LMM For Classification
,Stitch Images
,Stability AI Image Generation
,Image Threshold
,Detections Stitch
,OCR Model
,LMM
,Keypoint Visualization
,Color Visualization
,Single-Label Classification Model
,YOLO-World Model
,Image Convert Grayscale
,Polygon Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Reference Path Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..reference_path
(list_of_values
): Reference path in a format [(x1, y1), (x2, y2), (x3, y3), ...].color
(string
): Color of the zone..thickness
(integer
): Thickness of the lines in pixels..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Reference Path Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/reference_path_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"reference_path": "$inputs.expected_path",
"color": "WHITE",
"thickness": 2
}