Reference Path Visualization¶
Class: ReferencePathVisualizationBlockV1
The Reference Path Visualization block draws reference path in the image. To be used in combination with Path deviation block - to display the reference path.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/reference_path_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
reference_path |
List[Any] |
Reference path in a format [(x1, y1), (x2, y2), (x3, y3), ...]. | ✅ |
color |
str |
Color of the zone.. | ✅ |
thickness |
int |
Thickness of the lines in pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Reference Path Visualization
in version v1
.
- inputs:
Halo Visualization
,Polygon Zone Visualization
,Keypoint Detection Model
,Label Visualization
,Color Visualization
,Clip Comparison
,Relative Static Crop
,VLM as Classifier
,CSV Formatter
,Stability AI Image Generation
,Florence-2 Model
,Circle Visualization
,Roboflow Dataset Upload
,LMM For Classification
,Depth Estimation
,Absolute Static Crop
,Perspective Correction
,Twilio SMS Notification
,Google Gemini
,Slack Notification
,Grid Visualization
,Image Preprocessing
,Image Blur
,Classification Label Visualization
,Email Notification
,Local File Sink
,Image Contours
,Florence-2 Model
,SIFT Comparison
,JSON Parser
,Dimension Collapse
,Instance Segmentation Model
,Reference Path Visualization
,Google Vision OCR
,SIFT
,Llama 3.2 Vision
,Multi-Label Classification Model
,Line Counter
,Keypoint Visualization
,CogVLM
,SIFT Comparison
,Ellipse Visualization
,Roboflow Dataset Upload
,Triangle Visualization
,Line Counter Visualization
,VLM as Detector
,Dynamic Zone
,Dot Visualization
,Clip Comparison
,Template Matching
,VLM as Classifier
,Mask Visualization
,Dynamic Crop
,Object Detection Model
,Stitch Images
,Webhook Sink
,Pixelate Visualization
,Image Threshold
,Corner Visualization
,Roboflow Custom Metadata
,Distance Measurement
,Pixel Color Count
,OpenAI
,Model Comparison Visualization
,Camera Calibration
,Detections Consensus
,Blur Visualization
,Stability AI Inpainting
,Line Counter
,Camera Focus
,Image Slicer
,Identify Changes
,Trace Visualization
,OpenAI
,Bounding Box Visualization
,Stability AI Outpainting
,Buffer
,Identify Outliers
,Crop Visualization
,Stitch OCR Detections
,Anthropic Claude
,PTZ Tracking (ONVIF)
.md),Size Measurement
,OpenAI
,Single-Label Classification Model
,Image Slicer
,Model Monitoring Inference Aggregator
,VLM as Detector
,LMM
,OCR Model
,Image Convert Grayscale
,Background Color Visualization
,Polygon Visualization
- outputs:
Multi-Label Classification Model
,Polygon Zone Visualization
,Halo Visualization
,Keypoint Detection Model
,Label Visualization
,Color Visualization
,Clip Comparison
,QR Code Detection
,Relative Static Crop
,VLM as Classifier
,Stability AI Image Generation
,Segment Anything 2 Model
,Florence-2 Model
,Circle Visualization
,Roboflow Dataset Upload
,LMM For Classification
,Depth Estimation
,Absolute Static Crop
,Perspective Correction
,Google Gemini
,Detections Stitch
,Image Preprocessing
,Image Blur
,Classification Label Visualization
,Image Contours
,Florence-2 Model
,YOLO-World Model
,Instance Segmentation Model
,Reference Path Visualization
,Google Vision OCR
,Object Detection Model
,SIFT
,Multi-Label Classification Model
,Llama 3.2 Vision
,Keypoint Visualization
,Single-Label Classification Model
,CogVLM
,SIFT Comparison
,Gaze Detection
,Ellipse Visualization
,Roboflow Dataset Upload
,Triangle Visualization
,Line Counter Visualization
,Perception Encoder Embedding Model
,VLM as Detector
,Dot Visualization
,Clip Comparison
,Template Matching
,Barcode Detection
,VLM as Classifier
,Mask Visualization
,Object Detection Model
,Dynamic Crop
,CLIP Embedding Model
,Stitch Images
,Moondream2
,Pixelate Visualization
,SmolVLM2
,Image Threshold
,Corner Visualization
,Byte Tracker
,Pixel Color Count
,OpenAI
,Model Comparison Visualization
,Camera Calibration
,Qwen2.5-VL
,Detections Stabilizer
,Blur Visualization
,Stability AI Inpainting
,Camera Focus
,Image Slicer
,OpenAI
,Trace Visualization
,Time in Zone
,Dominant Color
,Bounding Box Visualization
,Stability AI Outpainting
,Buffer
,Crop Visualization
,Anthropic Claude
,OpenAI
,Keypoint Detection Model
,Single-Label Classification Model
,Instance Segmentation Model
,Image Slicer
,LMM
,OCR Model
,VLM as Detector
,Image Convert Grayscale
,Background Color Visualization
,Polygon Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Reference Path Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..reference_path
(list_of_values
): Reference path in a format [(x1, y1), (x2, y2), (x3, y3), ...].color
(string
): Color of the zone..thickness
(integer
): Thickness of the lines in pixels..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Reference Path Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/reference_path_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"reference_path": "$inputs.expected_path",
"color": "WHITE",
"thickness": 2
}