Reference Path Visualization¶
Class: ReferencePathVisualizationBlockV1
The Reference Path Visualization block draws reference path in the image. To be used in combination with Path deviation block - to display the reference path.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/reference_path_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
reference_path |
List[Any] |
Reference path in a format [(x1, y1), (x2, y2), (x3, y3), ...]. | ✅ |
color |
str |
Color of the zone.. | ✅ |
thickness |
int |
Thickness of the lines in pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Reference Path Visualization
in version v1
.
- inputs:
Stitch Images
,Pixelate Visualization
,Multi-Label Classification Model
,LMM For Classification
,Line Counter
,Blur Visualization
,Single-Label Classification Model
,Mask Visualization
,OCR Model
,Object Detection Model
,SIFT
,Line Counter
,Model Monitoring Inference Aggregator
,Polygon Visualization
,Halo Visualization
,VLM as Detector
,Grid Visualization
,Google Vision OCR
,Model Comparison Visualization
,Email Notification
,Camera Focus
,CogVLM
,Image Threshold
,Keypoint Visualization
,Template Matching
,Image Preprocessing
,Roboflow Dataset Upload
,Slack Notification
,Stitch OCR Detections
,Identify Changes
,Relative Static Crop
,Background Color Visualization
,Clip Comparison
,Bounding Box Visualization
,Ellipse Visualization
,Image Contours
,Label Visualization
,Classification Label Visualization
,Line Counter Visualization
,LMM
,Stability AI Inpainting
,Reference Path Visualization
,VLM as Detector
,Dynamic Crop
,Triangle Visualization
,Absolute Static Crop
,Distance Measurement
,Florence-2 Model
,SIFT Comparison
,Keypoint Detection Model
,Corner Visualization
,Perspective Correction
,Local File Sink
,Polygon Zone Visualization
,VLM as Classifier
,Dimension Collapse
,Image Slicer
,Trace Visualization
,Twilio SMS Notification
,OpenAI
,Detections Consensus
,Webhook Sink
,Roboflow Custom Metadata
,Size Measurement
,Crop Visualization
,Instance Segmentation Model
,Buffer
,Roboflow Dataset Upload
,VLM as Classifier
,Clip Comparison
,Anthropic Claude
,SIFT Comparison
,Image Blur
,Circle Visualization
,Image Convert Grayscale
,Dot Visualization
,Dynamic Zone
,Google Gemini
,JSON Parser
,Identify Outliers
,Florence-2 Model
,OpenAI
,Color Visualization
,Pixel Color Count
,CSV Formatter
,Llama 3.2 Vision
- outputs:
Multi-Label Classification Model
,Pixelate Visualization
,Stitch Images
,LMM For Classification
,Keypoint Detection Model
,Gaze Detection
,Instance Segmentation Model
,CLIP Embedding Model
,Blur Visualization
,OCR Model
,Mask Visualization
,Object Detection Model
,Single-Label Classification Model
,SIFT
,YOLO-World Model
,Polygon Visualization
,Halo Visualization
,VLM as Detector
,Google Vision OCR
,Model Comparison Visualization
,Camera Focus
,CogVLM
,Byte Tracker
,Image Threshold
,Keypoint Visualization
,Template Matching
,Image Preprocessing
,Roboflow Dataset Upload
,Relative Static Crop
,Background Color Visualization
,Clip Comparison
,Bounding Box Visualization
,Image Contours
,Label Visualization
,Line Counter Visualization
,Classification Label Visualization
,Ellipse Visualization
,LMM
,Reference Path Visualization
,Stability AI Inpainting
,VLM as Detector
,Dynamic Crop
,Dominant Color
,Triangle Visualization
,Absolute Static Crop
,Object Detection Model
,Florence-2 Model
,Detections Stitch
,Barcode Detection
,SIFT Comparison
,Keypoint Detection Model
,Corner Visualization
,Perspective Correction
,Polygon Zone Visualization
,VLM as Classifier
,Image Slicer
,Trace Visualization
,OpenAI
,Crop Visualization
,Instance Segmentation Model
,Buffer
,Roboflow Dataset Upload
,Clip Comparison
,VLM as Classifier
,Anthropic Claude
,Image Blur
,Dot Visualization
,Image Convert Grayscale
,Circle Visualization
,Google Gemini
,QR Code Detection
,Segment Anything 2 Model
,Single-Label Classification Model
,Florence-2 Model
,Time in Zone
,Detections Stabilizer
,OpenAI
,Color Visualization
,Pixel Color Count
,Multi-Label Classification Model
,Llama 3.2 Vision
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Reference Path Visualization
in version v1
has.
Bindings
-
input
image
(image
): Select the input image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..reference_path
(list_of_values
): Reference path in a format [(x1, y1), (x2, y2), (x3, y3), ...].color
(string
): Color of the zone..thickness
(integer
): Thickness of the lines in pixels..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Reference Path Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/reference_path_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"reference_path": "$inputs.expected_path",
"color": "WHITE",
"thickness": 2
}