Roboflow Dataset Upload¶
v2¶
Class: RoboflowDatasetUploadBlockV2
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.sinks.roboflow.dataset_upload.v2.RoboflowDatasetUploadBlockV2
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Block let users save their images and predictions into Roboflow Dataset. Persisting data from production environments helps iteratively building more robust models.
Block provides configuration options to decide how data should be stored and what are the limits to be applied. We advice using this block in combination with rate limiter blocks to effectively collect data that the model struggle with.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/roboflow_dataset_upload@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
target_project |
str |
Roboflow project where data will be saved.. | ✅ |
data_percentage |
float |
Percent of data that will be saved (0.0 to 100.0).. | ✅ |
minutely_usage_limit |
int |
Maximum number of image uploads allowed per minute.. | ❌ |
hourly_usage_limit |
int |
Maximum number of image uploads allowed per hour.. | ❌ |
daily_usage_limit |
int |
Maximum number of image uploads allowed per day.. | ❌ |
usage_quota_name |
str |
A unique identifier for tracking usage quotas (minutely, hourly, daily limits).. | ❌ |
max_image_size |
Tuple[int, int] |
Maximum size of the image to be saved. Bigger images will be downsized preserving aspect ratio.. | ❌ |
compression_level |
int |
Compression level for the registered image.. | ❌ |
registration_tags |
List[str] |
Tags to be attached to the registered image.. | ✅ |
persist_predictions |
bool |
Boolean flag to specify if model predictions should be saved along with the image.. | ✅ |
disable_sink |
bool |
Boolean flag to disable block execution.. | ✅ |
fire_and_forget |
bool |
Boolean flag to run the block asynchronously (True) for faster workflows or synchronously (False) for debugging and error handling.. | ✅ |
labeling_batch_prefix |
str |
Target batch name for the registered image.. | ✅ |
labeling_batches_recreation_frequency |
str |
Frequency in which new labeling batches are created for uploaded images.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Roboflow Dataset Upload
in version v2
.
- inputs:
Anthropic Claude
,Crop Visualization
,SIFT
,Line Counter
,Stitch OCR Detections
,LMM For Classification
,Blur Visualization
,PTZ Tracking (ONVIF)
.md),Line Counter Visualization
,Color Visualization
,Image Contours
,Camera Focus
,Mask Visualization
,Image Convert Grayscale
,Circle Visualization
,Google Gemini
,Cosine Similarity
,Absolute Static Crop
,VLM as Classifier
,Object Detection Model
,Dynamic Zone
,Multi-Label Classification Model
,Keypoint Detection Model
,Byte Tracker
,Detections Consensus
,Stitch Images
,Trace Visualization
,Detections Filter
,Image Preprocessing
,Roboflow Custom Metadata
,OCR Model
,Object Detection Model
,Bounding Rectangle
,JSON Parser
,Detections Transformation
,Clip Comparison
,Polygon Zone Visualization
,LMM
,QR Code Generator
,YOLO-World Model
,Size Measurement
,Halo Visualization
,Perspective Correction
,Moondream2
,Stability AI Inpainting
,Florence-2 Model
,Buffer
,Template Matching
,Velocity
,Label Visualization
,Webhook Sink
,VLM as Detector
,Segment Anything 2 Model
,Stability AI Image Generation
,Triangle Visualization
,Keypoint Detection Model
,Background Color Visualization
,Relative Static Crop
,Detections Stabilizer
,Slack Notification
,Corner Visualization
,Byte Tracker
,Path Deviation
,Multi-Label Classification Model
,Icon Visualization
,Overlap Filter
,Pixelate Visualization
,Image Blur
,Gaze Detection
,SIFT Comparison
,Model Comparison Visualization
,VLM as Detector
,CSV Formatter
,Instance Segmentation Model
,Time in Zone
,Llama 3.2 Vision
,Image Threshold
,Google Vision OCR
,Reference Path Visualization
,VLM as Classifier
,Image Slicer
,Roboflow Dataset Upload
,CogVLM
,Byte Tracker
,Identify Outliers
,Depth Estimation
,Roboflow Dataset Upload
,Detection Offset
,Single-Label Classification Model
,OpenAI
,Classification Label Visualization
,Polygon Visualization
,Stability AI Outpainting
,Keypoint Visualization
,Dot Visualization
,Time in Zone
,Email Notification
,Grid Visualization
,Local File Sink
,OpenAI
,Single-Label Classification Model
,Bounding Box Visualization
,Camera Calibration
,Detections Classes Replacement
,Ellipse Visualization
,Detections Merge
,OpenAI
,Florence-2 Model
,Path Deviation
,Model Monitoring Inference Aggregator
,Image Slicer
,Instance Segmentation Model
,SIFT Comparison
,Twilio SMS Notification
,Detections Stitch
,Dimension Collapse
,Identify Changes
,Clip Comparison
,Dynamic Crop
- outputs:
Anthropic Claude
,Crop Visualization
,Line Counter
,Line Counter
,LMM For Classification
,Blur Visualization
,PTZ Tracking (ONVIF)
.md),Line Counter Visualization
,Color Visualization
,Cache Set
,Mask Visualization
,Circle Visualization
,Google Gemini
,Object Detection Model
,Multi-Label Classification Model
,Dynamic Zone
,Keypoint Detection Model
,Detections Consensus
,Trace Visualization
,Image Preprocessing
,Roboflow Custom Metadata
,Object Detection Model
,Cache Get
,Polygon Zone Visualization
,LMM
,QR Code Generator
,YOLO-World Model
,Size Measurement
,Halo Visualization
,CLIP Embedding Model
,Perspective Correction
,Florence-2 Model
,Stability AI Inpainting
,Moondream2
,Template Matching
,Label Visualization
,Webhook Sink
,Distance Measurement
,Pixel Color Count
,Segment Anything 2 Model
,Perception Encoder Embedding Model
,Stability AI Image Generation
,Keypoint Detection Model
,Triangle Visualization
,Background Color Visualization
,Slack Notification
,Corner Visualization
,Multi-Label Classification Model
,Path Deviation
,Icon Visualization
,Pixelate Visualization
,Image Blur
,Gaze Detection
,Model Comparison Visualization
,Llama 3.2 Vision
,Instance Segmentation Model
,Time in Zone
,Image Threshold
,Google Vision OCR
,Reference Path Visualization
,Roboflow Dataset Upload
,CogVLM
,Roboflow Dataset Upload
,Single-Label Classification Model
,OpenAI
,Classification Label Visualization
,Polygon Visualization
,Keypoint Visualization
,Stability AI Outpainting
,Time in Zone
,Dot Visualization
,Email Notification
,Local File Sink
,OpenAI
,Single-Label Classification Model
,Bounding Box Visualization
,Detections Classes Replacement
,Ellipse Visualization
,OpenAI
,Florence-2 Model
,Path Deviation
,Model Monitoring Inference Aggregator
,Twilio SMS Notification
,Instance Segmentation Model
,SIFT Comparison
,Detections Stitch
,Clip Comparison
,Dynamic Crop
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Roboflow Dataset Upload
in version v2
has.
Bindings
-
input
images
(image
): The image to upload..target_project
(roboflow_project
): Roboflow project where data will be saved..predictions
(Union[classification_prediction
,object_detection_prediction
,instance_segmentation_prediction
,keypoint_detection_prediction
]): Model predictions to be uploaded..data_percentage
(float
): Percent of data that will be saved (0.0 to 100.0)..registration_tags
(Union[list_of_values
,string
]): Tags to be attached to the registered image..persist_predictions
(boolean
): Boolean flag to specify if model predictions should be saved along with the image..disable_sink
(boolean
): Boolean flag to disable block execution..fire_and_forget
(boolean
): Boolean flag to run the block asynchronously (True) for faster workflows or synchronously (False) for debugging and error handling..labeling_batch_prefix
(string
): Target batch name for the registered image..
-
output
Example JSON definition of step Roboflow Dataset Upload
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/roboflow_dataset_upload@v2",
"images": "$inputs.image",
"target_project": "my_dataset",
"predictions": "$steps.object_detection_model.predictions",
"data_percentage": true,
"minutely_usage_limit": 10,
"hourly_usage_limit": 10,
"daily_usage_limit": 10,
"usage_quota_name": "quota-for-data-sampling-1",
"max_image_size": [
1920,
1080
],
"compression_level": 95,
"registration_tags": [
"location-florida",
"factory-name",
"$inputs.dynamic_tag"
],
"persist_predictions": true,
"disable_sink": true,
"fire_and_forget": "<block_does_not_provide_example>",
"labeling_batch_prefix": "my_labeling_batch_name",
"labeling_batches_recreation_frequency": "never"
}
v1¶
Class: RoboflowDatasetUploadBlockV1
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.sinks.roboflow.dataset_upload.v1.RoboflowDatasetUploadBlockV1
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Block let users save their images and predictions into Roboflow Dataset. Persisting data from production environments helps iteratively building more robust models.
Block provides configuration options to decide how data should be stored and what are the limits to be applied. We advice using this block in combination with rate limiter blocks to effectively collect data that the model struggle with.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/roboflow_dataset_upload@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
target_project |
str |
Roboflow project where data will be saved.. | ✅ |
minutely_usage_limit |
int |
Maximum number of image uploads allowed per minute.. | ❌ |
hourly_usage_limit |
int |
Maximum number of image uploads allowed per hour.. | ❌ |
daily_usage_limit |
int |
Maximum number of image uploads allowed per day.. | ❌ |
usage_quota_name |
str |
A unique identifier for tracking usage quotas (minutely, hourly, daily limits).. | ❌ |
max_image_size |
Tuple[int, int] |
Maximum size of the image to be saved. Bigger images will be downsized preserving aspect ratio.. | ❌ |
compression_level |
int |
Compression level for the registered image.. | ❌ |
registration_tags |
List[str] |
Tags to be attached to the registered image.. | ✅ |
persist_predictions |
bool |
Boolean flag to specify if model predictions should be saved along with the image.. | ❌ |
disable_sink |
bool |
Boolean flag to disable block execution.. | ✅ |
fire_and_forget |
bool |
Boolean flag to run the block asynchronously (True) for faster workflows or synchronously (False) for debugging and error handling.. | ✅ |
labeling_batch_prefix |
str |
Target batch name for the registered image.. | ✅ |
labeling_batches_recreation_frequency |
str |
Frequency in which new labeling batches are created for uploaded images.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Roboflow Dataset Upload
in version v1
.
- inputs:
Anthropic Claude
,Crop Visualization
,SIFT
,Line Counter
,Stitch OCR Detections
,LMM For Classification
,Blur Visualization
,PTZ Tracking (ONVIF)
.md),Line Counter Visualization
,Color Visualization
,Image Contours
,Camera Focus
,Mask Visualization
,Image Convert Grayscale
,Circle Visualization
,Google Gemini
,Absolute Static Crop
,VLM as Classifier
,Object Detection Model
,Dynamic Zone
,Multi-Label Classification Model
,Keypoint Detection Model
,Byte Tracker
,Detections Consensus
,Stitch Images
,Trace Visualization
,Detections Filter
,Image Preprocessing
,Roboflow Custom Metadata
,OCR Model
,Object Detection Model
,Bounding Rectangle
,JSON Parser
,Detections Transformation
,Clip Comparison
,Polygon Zone Visualization
,LMM
,QR Code Generator
,YOLO-World Model
,Size Measurement
,Halo Visualization
,Perspective Correction
,Moondream2
,Stability AI Inpainting
,Florence-2 Model
,Buffer
,Template Matching
,Velocity
,Label Visualization
,Webhook Sink
,VLM as Detector
,Segment Anything 2 Model
,Stability AI Image Generation
,Triangle Visualization
,Keypoint Detection Model
,Background Color Visualization
,Relative Static Crop
,Detections Stabilizer
,Slack Notification
,Corner Visualization
,Byte Tracker
,Path Deviation
,Multi-Label Classification Model
,Icon Visualization
,Overlap Filter
,Pixelate Visualization
,Image Blur
,Gaze Detection
,SIFT Comparison
,Model Comparison Visualization
,VLM as Detector
,CSV Formatter
,Instance Segmentation Model
,Time in Zone
,Llama 3.2 Vision
,Image Threshold
,Google Vision OCR
,Reference Path Visualization
,VLM as Classifier
,Image Slicer
,Roboflow Dataset Upload
,CogVLM
,Byte Tracker
,Identify Outliers
,Depth Estimation
,Roboflow Dataset Upload
,Detection Offset
,Single-Label Classification Model
,OpenAI
,Classification Label Visualization
,Polygon Visualization
,Stability AI Outpainting
,Keypoint Visualization
,Dot Visualization
,Time in Zone
,Email Notification
,Grid Visualization
,Local File Sink
,OpenAI
,Single-Label Classification Model
,Bounding Box Visualization
,Camera Calibration
,Detections Classes Replacement
,Ellipse Visualization
,Detections Merge
,OpenAI
,Florence-2 Model
,Path Deviation
,Model Monitoring Inference Aggregator
,Image Slicer
,Instance Segmentation Model
,SIFT Comparison
,Twilio SMS Notification
,Detections Stitch
,Dimension Collapse
,Identify Changes
,Clip Comparison
,Dynamic Crop
- outputs:
Anthropic Claude
,Crop Visualization
,Line Counter
,Line Counter
,LMM For Classification
,Blur Visualization
,PTZ Tracking (ONVIF)
.md),Line Counter Visualization
,Color Visualization
,Cache Set
,Mask Visualization
,Circle Visualization
,Google Gemini
,Object Detection Model
,Multi-Label Classification Model
,Dynamic Zone
,Keypoint Detection Model
,Detections Consensus
,Trace Visualization
,Image Preprocessing
,Roboflow Custom Metadata
,Object Detection Model
,Cache Get
,Polygon Zone Visualization
,LMM
,QR Code Generator
,YOLO-World Model
,Size Measurement
,Halo Visualization
,CLIP Embedding Model
,Perspective Correction
,Florence-2 Model
,Stability AI Inpainting
,Moondream2
,Template Matching
,Label Visualization
,Webhook Sink
,Distance Measurement
,Pixel Color Count
,Segment Anything 2 Model
,Perception Encoder Embedding Model
,Stability AI Image Generation
,Keypoint Detection Model
,Triangle Visualization
,Background Color Visualization
,Slack Notification
,Corner Visualization
,Multi-Label Classification Model
,Path Deviation
,Icon Visualization
,Pixelate Visualization
,Image Blur
,Gaze Detection
,Model Comparison Visualization
,Llama 3.2 Vision
,Instance Segmentation Model
,Time in Zone
,Image Threshold
,Google Vision OCR
,Reference Path Visualization
,Roboflow Dataset Upload
,CogVLM
,Roboflow Dataset Upload
,Single-Label Classification Model
,OpenAI
,Classification Label Visualization
,Polygon Visualization
,Keypoint Visualization
,Stability AI Outpainting
,Time in Zone
,Dot Visualization
,Email Notification
,Local File Sink
,OpenAI
,Single-Label Classification Model
,Bounding Box Visualization
,Detections Classes Replacement
,Ellipse Visualization
,OpenAI
,Florence-2 Model
,Path Deviation
,Model Monitoring Inference Aggregator
,Twilio SMS Notification
,Instance Segmentation Model
,SIFT Comparison
,Detections Stitch
,Clip Comparison
,Dynamic Crop
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Roboflow Dataset Upload
in version v1
has.
Bindings
-
input
image
(image
): Image to upload..predictions
(Union[classification_prediction
,object_detection_prediction
,instance_segmentation_prediction
,keypoint_detection_prediction
]): Model predictions to be uploaded..target_project
(roboflow_project
): Roboflow project where data will be saved..registration_tags
(Union[list_of_values
,string
]): Tags to be attached to the registered image..disable_sink
(boolean
): Boolean flag to disable block execution..fire_and_forget
(boolean
): Boolean flag to run the block asynchronously (True) for faster workflows or synchronously (False) for debugging and error handling..labeling_batch_prefix
(string
): Target batch name for the registered image..
-
output
Example JSON definition of step Roboflow Dataset Upload
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/roboflow_dataset_upload@v1",
"image": "$inputs.image",
"predictions": "$steps.object_detection_model.predictions",
"target_project": "my_project",
"minutely_usage_limit": 10,
"hourly_usage_limit": 10,
"daily_usage_limit": 10,
"usage_quota_name": "quota-for-data-sampling-1",
"max_image_size": [
512,
512
],
"compression_level": 75,
"registration_tags": [
"location-florida",
"factory-name",
"$inputs.dynamic_tag"
],
"persist_predictions": true,
"disable_sink": true,
"fire_and_forget": true,
"labeling_batch_prefix": "my_labeling_batch_name",
"labeling_batches_recreation_frequency": "never"
}