Roboflow Dataset Upload¶
v2¶
Class: RoboflowDatasetUploadBlockV2
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.sinks.roboflow.dataset_upload.v2.RoboflowDatasetUploadBlockV2
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Block let users save their images and predictions into Roboflow Dataset. Persisting data from production environments helps iteratively building more robust models.
Block provides configuration options to decide how data should be stored and what are the limits to be applied. We advice using this block in combination with rate limiter blocks to effectively collect data that the model struggle with.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/roboflow_dataset_upload@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
target_project |
str |
Roboflow project where data will be saved.. | ✅ |
data_percentage |
float |
Percent of data that will be saved (0.0 to 100.0).. | ✅ |
minutely_usage_limit |
int |
Maximum number of image uploads allowed per minute.. | ❌ |
hourly_usage_limit |
int |
Maximum number of image uploads allowed per hour.. | ❌ |
daily_usage_limit |
int |
Maximum number of image uploads allowed per day.. | ❌ |
usage_quota_name |
str |
A unique identifier for tracking usage quotas (minutely, hourly, daily limits).. | ❌ |
max_image_size |
Tuple[int, int] |
Maximum size of the image to be saved. Bigger images will be downsized preserving aspect ratio.. | ❌ |
compression_level |
int |
Compression level for the registered image.. | ❌ |
registration_tags |
List[str] |
Tags to be attached to the registered image.. | ✅ |
persist_predictions |
bool |
Boolean flag to specify if model predictions should be saved along with the image.. | ✅ |
disable_sink |
bool |
Boolean flag to disable block execution.. | ✅ |
fire_and_forget |
bool |
Boolean flag to run the block asynchronously (True) for faster workflows or synchronously (False) for debugging and error handling.. | ✅ |
labeling_batch_prefix |
str |
Target batch name for the registered image.. | ✅ |
labeling_batches_recreation_frequency |
str |
Frequency in which new labeling batches are created for uploaded images.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Roboflow Dataset Upload
in version v2
.
- inputs:
Identify Changes
,Detection Offset
,Camera Focus
,Line Counter
,Single-Label Classification Model
,Polygon Zone Visualization
,Detections Filter
,Slack Notification
,Time in Zone
,Local File Sink
,Grid Visualization
,YOLO-World Model
,Image Convert Grayscale
,Trace Visualization
,Instance Segmentation Model
,Absolute Static Crop
,Roboflow Custom Metadata
,Perspective Correction
,OpenAI
,Circle Visualization
,Clip Comparison
,Image Slicer
,OpenAI
,Cosine Similarity
,Triangle Visualization
,Halo Visualization
,Gaze Detection
,Byte Tracker
,Byte Tracker
,Corner Visualization
,Email Notification
,Detections Classes Replacement
,Object Detection Model
,Template Matching
,LMM
,Detections Consensus
,Roboflow Dataset Upload
,Overlap Filter
,Dynamic Crop
,VLM as Classifier
,Depth Estimation
,Dynamic Zone
,Velocity
,Model Monitoring Inference Aggregator
,Stitch Images
,Segment Anything 2 Model
,Object Detection Model
,Llama 3.2 Vision
,Model Comparison Visualization
,Anthropic Claude
,Keypoint Detection Model
,Crop Visualization
,Blur Visualization
,SIFT Comparison
,CogVLM
,Image Threshold
,Stability AI Inpainting
,VLM as Detector
,Relative Static Crop
,Image Preprocessing
,Keypoint Visualization
,Background Color Visualization
,Path Deviation
,Color Visualization
,Moondream2
,Twilio SMS Notification
,Multi-Label Classification Model
,OCR Model
,Classification Label Visualization
,Google Vision OCR
,Camera Calibration
,Pixelate Visualization
,Stitch OCR Detections
,Label Visualization
,Image Slicer
,Time in Zone
,Reference Path Visualization
,Single-Label Classification Model
,Webhook Sink
,Google Gemini
,Roboflow Dataset Upload
,Line Counter Visualization
,JSON Parser
,Identify Outliers
,Byte Tracker
,Multi-Label Classification Model
,Image Blur
,Detections Transformation
,Florence-2 Model
,SIFT Comparison
,Detections Stabilizer
,LMM For Classification
,Image Contours
,Polygon Visualization
,Instance Segmentation Model
,CSV Formatter
,SIFT
,Florence-2 Model
,Detections Merge
,Ellipse Visualization
,Mask Visualization
,Keypoint Detection Model
,Bounding Rectangle
,Bounding Box Visualization
,Dot Visualization
,Detections Stitch
,Stability AI Image Generation
,VLM as Detector
,Path Deviation
,VLM as Classifier
- outputs:
Line Counter
,Single-Label Classification Model
,Polygon Zone Visualization
,Slack Notification
,Time in Zone
,Local File Sink
,YOLO-World Model
,Instance Segmentation Model
,Trace Visualization
,Roboflow Custom Metadata
,Perspective Correction
,OpenAI
,Distance Measurement
,Circle Visualization
,Clip Comparison
,OpenAI
,Triangle Visualization
,Halo Visualization
,Gaze Detection
,Line Counter
,Size Measurement
,Corner Visualization
,Email Notification
,Object Detection Model
,Template Matching
,LMM
,Detections Consensus
,Roboflow Dataset Upload
,Dynamic Crop
,Cache Set
,Model Monitoring Inference Aggregator
,Cache Get
,Segment Anything 2 Model
,Object Detection Model
,Llama 3.2 Vision
,Model Comparison Visualization
,Anthropic Claude
,Keypoint Detection Model
,Crop Visualization
,Blur Visualization
,CLIP Embedding Model
,CogVLM
,Image Threshold
,Stability AI Inpainting
,Image Preprocessing
,Keypoint Visualization
,Background Color Visualization
,Path Deviation
,Pixel Color Count
,Color Visualization
,Twilio SMS Notification
,Multi-Label Classification Model
,Classification Label Visualization
,Google Vision OCR
,Pixelate Visualization
,Label Visualization
,Time in Zone
,Reference Path Visualization
,Webhook Sink
,Single-Label Classification Model
,Google Gemini
,Roboflow Dataset Upload
,Line Counter Visualization
,Multi-Label Classification Model
,Image Blur
,Florence-2 Model
,SIFT Comparison
,LMM For Classification
,Instance Segmentation Model
,Polygon Visualization
,Florence-2 Model
,Ellipse Visualization
,Mask Visualization
,Keypoint Detection Model
,Detections Stitch
,Bounding Box Visualization
,Dot Visualization
,Stability AI Image Generation
,Path Deviation
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Roboflow Dataset Upload
in version v2
has.
Bindings
-
input
images
(image
): The image to upload..target_project
(roboflow_project
): Roboflow project where data will be saved..predictions
(Union[object_detection_prediction
,instance_segmentation_prediction
,keypoint_detection_prediction
,classification_prediction
]): Model predictions to be uploaded..data_percentage
(float
): Percent of data that will be saved (0.0 to 100.0)..registration_tags
(string
): Tags to be attached to the registered image..persist_predictions
(boolean
): Boolean flag to specify if model predictions should be saved along with the image..disable_sink
(boolean
): Boolean flag to disable block execution..fire_and_forget
(boolean
): Boolean flag to run the block asynchronously (True) for faster workflows or synchronously (False) for debugging and error handling..labeling_batch_prefix
(string
): Target batch name for the registered image..
-
output
Example JSON definition of step Roboflow Dataset Upload
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/roboflow_dataset_upload@v2",
"images": "$inputs.image",
"target_project": "my_dataset",
"predictions": "$steps.object_detection_model.predictions",
"data_percentage": true,
"minutely_usage_limit": 10,
"hourly_usage_limit": 10,
"daily_usage_limit": 10,
"usage_quota_name": "quota-for-data-sampling-1",
"max_image_size": [
1920,
1080
],
"compression_level": 95,
"registration_tags": [
"location-florida",
"factory-name",
"$inputs.dynamic_tag"
],
"persist_predictions": true,
"disable_sink": true,
"fire_and_forget": "<block_does_not_provide_example>",
"labeling_batch_prefix": "my_labeling_batch_name",
"labeling_batches_recreation_frequency": "never"
}
v1¶
Class: RoboflowDatasetUploadBlockV1
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.sinks.roboflow.dataset_upload.v1.RoboflowDatasetUploadBlockV1
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Block let users save their images and predictions into Roboflow Dataset. Persisting data from production environments helps iteratively building more robust models.
Block provides configuration options to decide how data should be stored and what are the limits to be applied. We advice using this block in combination with rate limiter blocks to effectively collect data that the model struggle with.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/roboflow_dataset_upload@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
target_project |
str |
Roboflow project where data will be saved.. | ✅ |
minutely_usage_limit |
int |
Maximum number of image uploads allowed per minute.. | ❌ |
hourly_usage_limit |
int |
Maximum number of image uploads allowed per hour.. | ❌ |
daily_usage_limit |
int |
Maximum number of image uploads allowed per day.. | ❌ |
usage_quota_name |
str |
A unique identifier for tracking usage quotas (minutely, hourly, daily limits).. | ❌ |
max_image_size |
Tuple[int, int] |
Maximum size of the image to be saved. Bigger images will be downsized preserving aspect ratio.. | ❌ |
compression_level |
int |
Compression level for the registered image.. | ❌ |
registration_tags |
List[str] |
Tags to be attached to the registered image.. | ✅ |
persist_predictions |
bool |
Boolean flag to specify if model predictions should be saved along with the image.. | ❌ |
disable_sink |
bool |
Boolean flag to disable block execution.. | ✅ |
fire_and_forget |
bool |
Boolean flag to run the block asynchronously (True) for faster workflows or synchronously (False) for debugging and error handling.. | ✅ |
labeling_batch_prefix |
str |
Target batch name for the registered image.. | ✅ |
labeling_batches_recreation_frequency |
str |
Frequency in which new labeling batches are created for uploaded images.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Roboflow Dataset Upload
in version v1
.
- inputs:
Identify Changes
,Detection Offset
,Camera Focus
,Line Counter
,Single-Label Classification Model
,Polygon Zone Visualization
,Detections Filter
,Slack Notification
,Time in Zone
,Local File Sink
,Grid Visualization
,YOLO-World Model
,Image Convert Grayscale
,Trace Visualization
,Instance Segmentation Model
,Absolute Static Crop
,Roboflow Custom Metadata
,Perspective Correction
,OpenAI
,Circle Visualization
,Clip Comparison
,Image Slicer
,OpenAI
,Triangle Visualization
,Halo Visualization
,Gaze Detection
,Byte Tracker
,Byte Tracker
,Corner Visualization
,Email Notification
,Detections Classes Replacement
,Object Detection Model
,Template Matching
,LMM
,Detections Consensus
,Roboflow Dataset Upload
,Overlap Filter
,Dynamic Crop
,VLM as Classifier
,Depth Estimation
,Dynamic Zone
,Velocity
,Model Monitoring Inference Aggregator
,Stitch Images
,Segment Anything 2 Model
,Object Detection Model
,Llama 3.2 Vision
,Model Comparison Visualization
,Anthropic Claude
,Keypoint Detection Model
,Crop Visualization
,Blur Visualization
,SIFT Comparison
,CogVLM
,Image Threshold
,Stability AI Inpainting
,VLM as Detector
,Relative Static Crop
,Image Preprocessing
,Keypoint Visualization
,Background Color Visualization
,Path Deviation
,Color Visualization
,Moondream2
,Twilio SMS Notification
,Multi-Label Classification Model
,OCR Model
,Classification Label Visualization
,Google Vision OCR
,Camera Calibration
,Pixelate Visualization
,Stitch OCR Detections
,Label Visualization
,Image Slicer
,Time in Zone
,Reference Path Visualization
,Single-Label Classification Model
,Webhook Sink
,Google Gemini
,Roboflow Dataset Upload
,Line Counter Visualization
,JSON Parser
,Identify Outliers
,Byte Tracker
,Multi-Label Classification Model
,Image Blur
,Detections Transformation
,Florence-2 Model
,SIFT Comparison
,Detections Stabilizer
,LMM For Classification
,Image Contours
,Polygon Visualization
,Instance Segmentation Model
,CSV Formatter
,SIFT
,Florence-2 Model
,Detections Merge
,Ellipse Visualization
,Mask Visualization
,Keypoint Detection Model
,Bounding Rectangle
,Bounding Box Visualization
,Dot Visualization
,Detections Stitch
,Stability AI Image Generation
,VLM as Detector
,Path Deviation
,VLM as Classifier
- outputs:
Line Counter
,Single-Label Classification Model
,Polygon Zone Visualization
,Slack Notification
,Time in Zone
,Local File Sink
,YOLO-World Model
,Instance Segmentation Model
,Trace Visualization
,Roboflow Custom Metadata
,Perspective Correction
,OpenAI
,Distance Measurement
,Circle Visualization
,Clip Comparison
,OpenAI
,Triangle Visualization
,Halo Visualization
,Gaze Detection
,Line Counter
,Size Measurement
,Corner Visualization
,Email Notification
,Object Detection Model
,Template Matching
,LMM
,Detections Consensus
,Roboflow Dataset Upload
,Dynamic Crop
,Cache Set
,Model Monitoring Inference Aggregator
,Cache Get
,Segment Anything 2 Model
,Object Detection Model
,Llama 3.2 Vision
,Model Comparison Visualization
,Anthropic Claude
,Keypoint Detection Model
,Crop Visualization
,Blur Visualization
,CLIP Embedding Model
,CogVLM
,Image Threshold
,Stability AI Inpainting
,Image Preprocessing
,Keypoint Visualization
,Background Color Visualization
,Path Deviation
,Pixel Color Count
,Color Visualization
,Twilio SMS Notification
,Multi-Label Classification Model
,Classification Label Visualization
,Google Vision OCR
,Pixelate Visualization
,Label Visualization
,Time in Zone
,Reference Path Visualization
,Webhook Sink
,Single-Label Classification Model
,Google Gemini
,Roboflow Dataset Upload
,Line Counter Visualization
,Multi-Label Classification Model
,Image Blur
,Florence-2 Model
,SIFT Comparison
,LMM For Classification
,Instance Segmentation Model
,Polygon Visualization
,Florence-2 Model
,Ellipse Visualization
,Mask Visualization
,Keypoint Detection Model
,Detections Stitch
,Bounding Box Visualization
,Dot Visualization
,Stability AI Image Generation
,Path Deviation
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Roboflow Dataset Upload
in version v1
has.
Bindings
-
input
image
(image
): Image to upload..predictions
(Union[object_detection_prediction
,instance_segmentation_prediction
,keypoint_detection_prediction
,classification_prediction
]): Model predictions to be uploaded..target_project
(roboflow_project
): Roboflow project where data will be saved..registration_tags
(string
): Tags to be attached to the registered image..disable_sink
(boolean
): Boolean flag to disable block execution..fire_and_forget
(boolean
): Boolean flag to run the block asynchronously (True) for faster workflows or synchronously (False) for debugging and error handling..labeling_batch_prefix
(string
): Target batch name for the registered image..
-
output
Example JSON definition of step Roboflow Dataset Upload
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/roboflow_dataset_upload@v1",
"image": "$inputs.image",
"predictions": "$steps.object_detection_model.predictions",
"target_project": "my_project",
"minutely_usage_limit": 10,
"hourly_usage_limit": 10,
"daily_usage_limit": 10,
"usage_quota_name": "quota-for-data-sampling-1",
"max_image_size": [
512,
512
],
"compression_level": 75,
"registration_tags": [
"location-florida",
"factory-name",
"$inputs.dynamic_tag"
],
"persist_predictions": true,
"disable_sink": true,
"fire_and_forget": true,
"labeling_batch_prefix": "my_labeling_batch_name",
"labeling_batches_recreation_frequency": "never"
}