Segment Anything 2 Model¶
Class: SegmentAnything2BlockV1
Source: inference.core.workflows.core_steps.models.foundation.segment_anything2.v1.SegmentAnything2BlockV1
Run Segment Anything 2, a zero-shot instance segmentation model, on an image.
** Dedicated inference server required (GPU recomended) **
You can use pass in boxes/predictions from other models to Segment Anything 2 to use as prompts for the model. If you pass in box detections from another model, the class names of the boxes will be forwarded to the predicted masks. If using the model unprompted, the model will assign integers as class names / ids.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/segment_anything@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
version |
str |
Model to be used. One of hiera_large, hiera_small, hiera_tiny, hiera_b_plus. | ✅ |
threshold |
float |
Threshold for predicted masks scores. | ✅ |
multimask_output |
bool |
Flag to determine whether to use sam2 internal multimask or single mask mode. For ambiguous prompts setting to True is recomended.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Segment Anything 2 Model
in version v1
.
- inputs:
Bounding Rectangle
,Identify Outliers
,Multi-Label Classification Model
,Single-Label Classification Model
,Classification Label Visualization
,Background Color Visualization
,Webhook Sink
,Dynamic Crop
,Mask Visualization
,Clip Comparison
,Google Vision OCR
,Twilio SMS Notification
,Segment Anything 2 Model
,Absolute Static Crop
,Detection Offset
,Stability AI Image Generation
,Model Monitoring Inference Aggregator
,Image Blur
,Florence-2 Model
,LMM For Classification
,Roboflow Dataset Upload
,Identify Changes
,CogVLM
,Circle Visualization
,OCR Model
,Crop Visualization
,Template Matching
,VLM as Detector
,JSON Parser
,SIFT Comparison
,Path Deviation
,OpenAI
,Stitch OCR Detections
,Velocity
,Detections Stitch
,OpenAI
,Image Preprocessing
,Label Visualization
,Detections Stabilizer
,Path Deviation
,VLM as Classifier
,Time in Zone
,Model Comparison Visualization
,Stitch Images
,Bounding Box Visualization
,Keypoint Detection Model
,Perspective Correction
,Moondream2
,SIFT Comparison
,Relative Static Crop
,Color Visualization
,Slack Notification
,Ellipse Visualization
,Reference Path Visualization
,Blur Visualization
,Pixelate Visualization
,Anthropic Claude
,Email Notification
,LMM
,Llama 3.2 Vision
,Instance Segmentation Model
,CSV Formatter
,VLM as Detector
,Keypoint Visualization
,Camera Focus
,Time in Zone
,Byte Tracker
,Florence-2 Model
,Detections Filter
,Detections Transformation
,YOLO-World Model
,Grid Visualization
,Image Convert Grayscale
,Image Threshold
,Trace Visualization
,Polygon Visualization
,Triangle Visualization
,Stability AI Inpainting
,Detections Consensus
,Keypoint Detection Model
,Cosine Similarity
,Halo Visualization
,Dot Visualization
,Polygon Zone Visualization
,Google Gemini
,Detections Merge
,Local File Sink
,Dynamic Zone
,Instance Segmentation Model
,Roboflow Custom Metadata
,VLM as Classifier
,Detections Classes Replacement
,Camera Calibration
,Gaze Detection
,Object Detection Model
,SIFT
,Corner Visualization
,Image Contours
,Line Counter Visualization
,Roboflow Dataset Upload
,Image Slicer
,Byte Tracker
,Image Slicer
,Byte Tracker
,Line Counter
,Object Detection Model
- outputs:
Bounding Rectangle
,Blur Visualization
,Pixelate Visualization
,Background Color Visualization
,Dynamic Crop
,Mask Visualization
,Time in Zone
,Byte Tracker
,Segment Anything 2 Model
,Detection Offset
,Model Monitoring Inference Aggregator
,Florence-2 Model
,Florence-2 Model
,Detections Filter
,Detections Transformation
,Roboflow Dataset Upload
,Circle Visualization
,Crop Visualization
,Trace Visualization
,Path Deviation
,Polygon Visualization
,Triangle Visualization
,Stability AI Inpainting
,Detections Consensus
,Halo Visualization
,Dot Visualization
,Detections Merge
,Velocity
,Detections Stitch
,Dynamic Zone
,Size Measurement
,Roboflow Custom Metadata
,Detections Classes Replacement
,Detections Stabilizer
,Label Visualization
,Path Deviation
,Line Counter
,Corner Visualization
,Time in Zone
,Model Comparison Visualization
,Roboflow Dataset Upload
,Bounding Box Visualization
,Byte Tracker
,Perspective Correction
,Byte Tracker
,Line Counter
,Distance Measurement
,Color Visualization
,Ellipse Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Segment Anything 2 Model
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..boxes
(Union[keypoint_detection_prediction
,object_detection_prediction
,instance_segmentation_prediction
]): Bounding boxes (from another model) to convert to polygons.version
(string
): Model to be used. One of hiera_large, hiera_small, hiera_tiny, hiera_b_plus.threshold
(float
): Threshold for predicted masks scores.multimask_output
(boolean
): Flag to determine whether to use sam2 internal multimask or single mask mode. For ambiguous prompts setting to True is recomended..
-
output
predictions
(instance_segmentation_prediction
): Prediction with detected bounding boxes and segmentation masks in form of sv.Detections(...) object.
Example JSON definition of step Segment Anything 2 Model
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/segment_anything@v1",
"images": "$inputs.image",
"boxes": "$steps.object_detection_model.predictions",
"version": "hiera_large",
"threshold": 0.3,
"multimask_output": true
}