Segment Anything 2 Model¶
Class: SegmentAnything2BlockV1
Source: inference.core.workflows.core_steps.models.foundation.segment_anything2.v1.SegmentAnything2BlockV1
Run Segment Anything 2, a zero-shot instance segmentation model, on an image.
** Dedicated inference server required (GPU recomended) **
You can use pass in boxes/predictions from other models to Segment Anything 2 to use as prompts for the model. If you pass in box detections from another model, the class names of the boxes will be forwarded to the predicted masks. If using the model unprompted, the model will assign integers as class names / ids.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/segment_anything@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
version |
str |
Model to be used. One of hiera_large, hiera_small, hiera_tiny, hiera_b_plus. | ✅ |
threshold |
float |
Threshold for predicted masks scores. | ✅ |
multimask_output |
bool |
Flag to determine whether to use sam2 internal multimask or single mask mode. For ambiguous prompts setting to True is recomended.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Segment Anything 2 Model
in version v1
.
- inputs:
Byte Tracker
,Polygon Zone Visualization
,Time in Zone
,LMM For Classification
,VLM as Classifier
,Identify Outliers
,Dot Visualization
,Morphological Transformation
,Blur Visualization
,Perspective Correction
,CSV Formatter
,Corner Visualization
,LMM
,PTZ Tracking (ONVIF)
.md),Florence-2 Model
,Grid Visualization
,Image Threshold
,Florence-2 Model
,Halo Visualization
,OpenAI
,Keypoint Detection Model
,Multi-Label Classification Model
,Detections Combine
,Detection Offset
,CogVLM
,EasyOCR
,Byte Tracker
,Line Counter Visualization
,Stitch OCR Detections
,VLM as Detector
,Stability AI Outpainting
,Twilio SMS Notification
,VLM as Classifier
,Keypoint Detection Model
,Google Vision OCR
,Identify Changes
,Camera Focus
,Roboflow Dataset Upload
,SIFT
,Instance Segmentation Model
,Email Notification
,Image Slicer
,Image Convert Grayscale
,Keypoint Visualization
,Clip Comparison
,Template Matching
,OCR Model
,Detections Stabilizer
,Bounding Box Visualization
,Instance Segmentation Model
,Llama 3.2 Vision
,Reference Path Visualization
,Dynamic Crop
,Roboflow Dataset Upload
,Mask Visualization
,Image Preprocessing
,Background Color Visualization
,Local File Sink
,Webhook Sink
,Camera Calibration
,OpenAI
,Depth Estimation
,Image Slicer
,QR Code Generator
,Cosine Similarity
,Detections Stitch
,SIFT Comparison
,Trace Visualization
,Time in Zone
,Velocity
,Detections Transformation
,Object Detection Model
,Contrast Equalization
,Byte Tracker
,Overlap Filter
,Crop Visualization
,Stability AI Image Generation
,Moondream2
,SIFT Comparison
,Roboflow Custom Metadata
,Object Detection Model
,Model Comparison Visualization
,Pixelate Visualization
,Dynamic Zone
,Model Monitoring Inference Aggregator
,Gaze Detection
,Line Counter
,Anthropic Claude
,Time in Zone
,Relative Static Crop
,Image Contours
,Polygon Visualization
,Path Deviation
,OpenAI
,Slack Notification
,JSON Parser
,Triangle Visualization
,Detections Filter
,YOLO-World Model
,Classification Label Visualization
,Detections Classes Replacement
,Bounding Rectangle
,Circle Visualization
,Image Blur
,Label Visualization
,VLM as Detector
,Google Gemini
,Absolute Static Crop
,Stability AI Inpainting
,Icon Visualization
,Ellipse Visualization
,Color Visualization
,Detections Merge
,Path Deviation
,Single-Label Classification Model
,Detections Consensus
,Stitch Images
,Segment Anything 2 Model
- outputs:
Byte Tracker
,Distance Measurement
,Time in Zone
,Dot Visualization
,Detections Stitch
,Size Measurement
,Time in Zone
,Blur Visualization
,Velocity
,Perspective Correction
,Detections Transformation
,Corner Visualization
,Trace Visualization
,Byte Tracker
,Overlap Filter
,PTZ Tracking (ONVIF)
.md),Florence-2 Model
,Crop Visualization
,Florence-2 Model
,Halo Visualization
,Roboflow Custom Metadata
,Model Comparison Visualization
,Detections Combine
,Detection Offset
,Pixelate Visualization
,Dynamic Zone
,Model Monitoring Inference Aggregator
,Byte Tracker
,Line Counter
,Time in Zone
,Polygon Visualization
,Path Deviation
,Triangle Visualization
,Roboflow Dataset Upload
,Detections Filter
,Detections Classes Replacement
,Bounding Rectangle
,Circle Visualization
,Detections Stabilizer
,Label Visualization
,Bounding Box Visualization
,Line Counter
,Stability AI Inpainting
,Icon Visualization
,Ellipse Visualization
,Dynamic Crop
,Color Visualization
,Roboflow Dataset Upload
,Segment Anything 2 Model
,Detections Merge
,Mask Visualization
,Path Deviation
,Detections Consensus
,Background Color Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Segment Anything 2 Model
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..boxes
(Union[object_detection_prediction
,instance_segmentation_prediction
,keypoint_detection_prediction
]): Bounding boxes (from another model) to convert to polygons.version
(string
): Model to be used. One of hiera_large, hiera_small, hiera_tiny, hiera_b_plus.threshold
(float
): Threshold for predicted masks scores.multimask_output
(boolean
): Flag to determine whether to use sam2 internal multimask or single mask mode. For ambiguous prompts setting to True is recomended..
-
output
predictions
(instance_segmentation_prediction
): Prediction with detected bounding boxes and segmentation masks in form of sv.Detections(...) object.
Example JSON definition of step Segment Anything 2 Model
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/segment_anything@v1",
"images": "$inputs.image",
"boxes": "$steps.object_detection_model.predictions",
"version": "hiera_large",
"threshold": 0.3,
"multimask_output": true
}