SIFT¶
Class: SIFTBlockV1
Source: inference.core.workflows.core_steps.classical_cv.sift.v1.SIFTBlockV1
The Scale-Invariant Feature Transform (SIFT) algorithm is a popular method in computer vision for detecting and describing features (interesting parts) in images. SIFT is used to find key points in an image and describe them in a way that allows for recognizing the same objects or features in different images, even if the images are taken from different angles, distances, or lighting conditions.
Read more: https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/sift@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to SIFT
in version v1
.
- inputs:
Image Threshold
,Image Convert Grayscale
,SIFT Comparison
,Absolute Static Crop
,Pixelate Visualization
,SIFT
,Line Counter Visualization
,Stitch Images
,Stability AI Image Generation
,Dot Visualization
,Mask Visualization
,Image Slicer
,Background Color Visualization
,Triangle Visualization
,Image Slicer
,Image Blur
,Camera Focus
,Grid Visualization
,Polygon Zone Visualization
,Blur Visualization
,Crop Visualization
,Label Visualization
,Classification Label Visualization
,Depth Estimation
,Image Preprocessing
,Model Comparison Visualization
,Stability AI Inpainting
,Reference Path Visualization
,Ellipse Visualization
,Bounding Box Visualization
,Halo Visualization
,Image Contours
,Corner Visualization
,Camera Calibration
,Circle Visualization
,Perspective Correction
,Dynamic Crop
,Polygon Visualization
,Relative Static Crop
,Trace Visualization
,Keypoint Visualization
,Color Visualization
- outputs:
Keypoint Detection Model
,CogVLM
,OpenAI
,Anthropic Claude
,Google Vision OCR
,Image Convert Grayscale
,Gaze Detection
,Florence-2 Model
,SmolVLM2
,Pixelate Visualization
,Single-Label Classification Model
,SIFT
,Qwen2.5-VL
,VLM as Detector
,OpenAI
,Moondream2
,YOLO-World Model
,Stability AI Image Generation
,SIFT Comparison
,Object Detection Model
,Mask Visualization
,Image Slicer
,Barcode Detection
,Triangle Visualization
,VLM as Detector
,Polygon Zone Visualization
,Model Comparison Visualization
,Crop Visualization
,LMM
,Classification Label Visualization
,Segment Anything 2 Model
,Keypoint Detection Model
,Reference Path Visualization
,Multi-Label Classification Model
,Google Gemini
,Bounding Box Visualization
,Image Contours
,Circle Visualization
,Perspective Correction
,Pixel Color Count
,Polygon Visualization
,VLM as Classifier
,Instance Segmentation Model
,Trace Visualization
,Color Visualization
,LMM For Classification
,Image Threshold
,Detections Stitch
,SIFT Comparison
,Absolute Static Crop
,Clip Comparison
,Line Counter Visualization
,Stitch Images
,Multi-Label Classification Model
,QR Code Detection
,Dot Visualization
,Instance Segmentation Model
,Background Color Visualization
,Florence-2 Model
,Detections Stabilizer
,Image Slicer
,Template Matching
,Roboflow Dataset Upload
,Roboflow Dataset Upload
,Image Blur
,Camera Focus
,CLIP Embedding Model
,Object Detection Model
,Stability AI Inpainting
,Blur Visualization
,Label Visualization
,Depth Estimation
,Image Preprocessing
,Llama 3.2 Vision
,Byte Tracker
,Ellipse Visualization
,VLM as Classifier
,Halo Visualization
,Corner Visualization
,Camera Calibration
,Clip Comparison
,Time in Zone
,Buffer
,Dynamic Crop
,Single-Label Classification Model
,Relative Static Crop
,OpenAI
,Keypoint Visualization
,Dominant Color
,OCR Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
SIFT
in version v1
has.
Bindings
-
input
image
(image
): The input image for this step..
-
output
image
(image
): Image in workflows.keypoints
(image_keypoints
): Image keypoints detected by classical Computer Vision method.descriptors
(numpy_array
): Numpy array.
Example JSON definition of step SIFT
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/sift@v1",
"image": "$inputs.image"
}