SIFT¶
Class: SIFTBlockV1
Source: inference.core.workflows.core_steps.classical_cv.sift.v1.SIFTBlockV1
The Scale-Invariant Feature Transform (SIFT) algorithm is a popular method in computer vision for detecting and describing features (interesting parts) in images. SIFT is used to find key points in an image and describe them in a way that allows for recognizing the same objects or features in different images, even if the images are taken from different angles, distances, or lighting conditions.
Read more: https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/sift@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to SIFT
in version v1
.
- inputs:
Corner Visualization
,Camera Focus
,Polygon Zone Visualization
,Circle Visualization
,Triangle Visualization
,Stability AI Inpainting
,Classification Label Visualization
,Bounding Box Visualization
,Depth Estimation
,SIFT
,Image Convert Grayscale
,Halo Visualization
,Grid Visualization
,Polygon Visualization
,Absolute Static Crop
,Dot Visualization
,Color Visualization
,Label Visualization
,Stability AI Outpainting
,Crop Visualization
,Perspective Correction
,Stability AI Image Generation
,Image Slicer
,Image Threshold
,Image Preprocessing
,Model Comparison Visualization
,SIFT Comparison
,Dynamic Crop
,Stitch Images
,Image Contours
,Mask Visualization
,Pixelate Visualization
,Camera Calibration
,Reference Path Visualization
,Image Blur
,Line Counter Visualization
,Background Color Visualization
,Image Slicer
,Keypoint Visualization
,Blur Visualization
,Ellipse Visualization
,Trace Visualization
,Relative Static Crop
- outputs:
YOLO-World Model
,OpenAI
,VLM as Detector
,Keypoint Detection Model
,Circle Visualization
,Gaze Detection
,Roboflow Dataset Upload
,Perception Encoder Embedding Model
,Depth Estimation
,SIFT
,Florence-2 Model
,Buffer
,Single-Label Classification Model
,Template Matching
,Detections Stitch
,Instance Segmentation Model
,Color Visualization
,Object Detection Model
,Perspective Correction
,Image Slicer
,OpenAI
,Keypoint Detection Model
,Model Comparison Visualization
,Clip Comparison
,Stitch Images
,Dynamic Crop
,Moondream2
,Image Contours
,Pixelate Visualization
,Llama 3.2 Vision
,Byte Tracker
,SIFT Comparison
,Camera Calibration
,Reference Path Visualization
,Time in Zone
,Image Blur
,CLIP Embedding Model
,Blur Visualization
,OCR Model
,Ellipse Visualization
,Trace Visualization
,SmolVLM2
,Polygon Zone Visualization
,Corner Visualization
,Google Gemini
,Camera Focus
,OpenAI
,Triangle Visualization
,Stability AI Inpainting
,Classification Label Visualization
,Single-Label Classification Model
,Barcode Detection
,Bounding Box Visualization
,Detections Stabilizer
,CogVLM
,Image Convert Grayscale
,Halo Visualization
,LMM
,Polygon Visualization
,Absolute Static Crop
,Object Detection Model
,Dot Visualization
,Label Visualization
,Stability AI Outpainting
,Crop Visualization
,Google Vision OCR
,Stability AI Image Generation
,Pixel Color Count
,Image Threshold
,Image Preprocessing
,VLM as Classifier
,SIFT Comparison
,Mask Visualization
,Dominant Color
,Florence-2 Model
,Segment Anything 2 Model
,Clip Comparison
,Roboflow Dataset Upload
,QR Code Detection
,Line Counter Visualization
,VLM as Classifier
,Instance Segmentation Model
,Background Color Visualization
,Anthropic Claude
,LMM For Classification
,Multi-Label Classification Model
,Image Slicer
,Keypoint Visualization
,Qwen2.5-VL
,Multi-Label Classification Model
,VLM as Detector
,Relative Static Crop
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
SIFT
in version v1
has.
Bindings
-
input
image
(image
): The input image for this step..
-
output
image
(image
): Image in workflows.keypoints
(image_keypoints
): Image keypoints detected by classical Computer Vision method.descriptors
(numpy_array
): Numpy array.
Example JSON definition of step SIFT
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/sift@v1",
"image": "$inputs.image"
}