Single-Label Classification Model¶
v2¶
Class: RoboflowClassificationModelBlockV2
(there are multiple versions of this block)
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Run inference on a multi-class classification model hosted on or uploaded to Roboflow.
You can query any model that is private to your account, or any public model available on Roboflow Universe.
You will need to set your Roboflow API key in your Inference environment to use this block. To learn more about setting your Roboflow API key, refer to the Inference documentation.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/roboflow_classification_model@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
model_id |
str |
Roboflow model identifier.. | ✅ |
confidence |
float |
Confidence threshold for predictions.. | ✅ |
disable_active_learning |
bool |
Boolean flag to disable project-level active learning for this block.. | ✅ |
active_learning_target_dataset |
str |
Target dataset for active learning, if enabled.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Single-Label Classification Model
in version v2
.
- inputs:
Crop Visualization
,Stitch Images
,Image Slicer
,Email Notification
,Relative Static Crop
,Ellipse Visualization
,VLM as Classifier
,Stability AI Inpainting
,Stability AI Image Generation
,Blur Visualization
,Keypoint Detection Model
,Circle Visualization
,Pixelate Visualization
,Model Comparison Visualization
,Webhook Sink
,Stability AI Outpainting
,Detections Consensus
,Single-Label Classification Model
,SIFT Comparison
,Bounding Box Visualization
,SIFT Comparison
,Identify Changes
,Grid Visualization
,VLM as Classifier
,Identify Outliers
,Background Color Visualization
,Image Slicer
,Image Contours
,Image Threshold
,Perspective Correction
,Twilio SMS Notification
,Label Visualization
,Camera Focus
,Triangle Visualization
,Dynamic Crop
,VLM as Detector
,JSON Parser
,Camera Calibration
,Classification Label Visualization
,Reference Path Visualization
,Color Visualization
,Keypoint Visualization
,Instance Segmentation Model
,Model Monitoring Inference Aggregator
,Local File Sink
,Halo Visualization
,PTZ Tracking (ONVIF)
.md),Multi-Label Classification Model
,Corner Visualization
,Clip Comparison
,Roboflow Dataset Upload
,Line Counter Visualization
,Mask Visualization
,QR Code Generator
,SIFT
,Polygon Visualization
,Dot Visualization
,Image Convert Grayscale
,VLM as Detector
,Slack Notification
,Dynamic Zone
,Icon Visualization
,Roboflow Dataset Upload
,Depth Estimation
,Roboflow Custom Metadata
,Image Blur
,Trace Visualization
,Absolute Static Crop
,Image Preprocessing
,Polygon Zone Visualization
,Object Detection Model
- outputs:
Classification Label Visualization
,Model Monitoring Inference Aggregator
,Instance Segmentation Model
,Instance Segmentation Model
,Keypoint Detection Model
,Keypoint Detection Model
,Multi-Label Classification Model
,Roboflow Dataset Upload
,Detections Classes Replacement
,SmolVLM2
,Webhook Sink
,Single-Label Classification Model
,Roboflow Dataset Upload
,Moondream2
,Roboflow Custom Metadata
,Multi-Label Classification Model
,Object Detection Model
,Qwen2.5-VL
,Single-Label Classification Model
,Object Detection Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Single-Label Classification Model
in version v2
has.
Bindings
-
input
images
(image
): The image to infer on..model_id
(roboflow_model_id
): Roboflow model identifier..confidence
(float_zero_to_one
): Confidence threshold for predictions..disable_active_learning
(boolean
): Boolean flag to disable project-level active learning for this block..active_learning_target_dataset
(roboflow_project
): Target dataset for active learning, if enabled..
-
output
predictions
(classification_prediction
): Predictions from classifier.inference_id
(inference_id
): Inference identifier.model_id
(roboflow_model_id
): Roboflow model id.
Example JSON definition of step Single-Label Classification Model
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/roboflow_classification_model@v2",
"images": "$inputs.image",
"model_id": "my_project/3",
"confidence": 0.3,
"disable_active_learning": true,
"active_learning_target_dataset": "my_project"
}
v1¶
Class: RoboflowClassificationModelBlockV1
(there are multiple versions of this block)
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Run inference on a multi-class classification model hosted on or uploaded to Roboflow.
You can query any model that is private to your account, or any public model available on Roboflow Universe.
You will need to set your Roboflow API key in your Inference environment to use this block. To learn more about setting your Roboflow API key, refer to the Inference documentation.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/roboflow_classification_model@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
model_id |
str |
Roboflow model identifier.. | ✅ |
confidence |
float |
Confidence threshold for predictions.. | ✅ |
disable_active_learning |
bool |
Boolean flag to disable project-level active learning for this block.. | ✅ |
active_learning_target_dataset |
str |
Target dataset for active learning, if enabled.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Single-Label Classification Model
in version v1
.
- inputs:
Crop Visualization
,Stitch Images
,Image Slicer
,Email Notification
,Relative Static Crop
,Ellipse Visualization
,VLM as Classifier
,Stability AI Inpainting
,Stability AI Image Generation
,Blur Visualization
,Keypoint Detection Model
,Circle Visualization
,Pixelate Visualization
,Model Comparison Visualization
,Webhook Sink
,Stability AI Outpainting
,Detections Consensus
,Single-Label Classification Model
,SIFT Comparison
,Bounding Box Visualization
,SIFT Comparison
,Identify Changes
,Grid Visualization
,VLM as Classifier
,Identify Outliers
,Background Color Visualization
,Image Slicer
,Image Contours
,Image Threshold
,Perspective Correction
,Twilio SMS Notification
,Label Visualization
,Camera Focus
,Triangle Visualization
,Dynamic Crop
,VLM as Detector
,JSON Parser
,Camera Calibration
,Classification Label Visualization
,Reference Path Visualization
,Color Visualization
,Keypoint Visualization
,Instance Segmentation Model
,Model Monitoring Inference Aggregator
,Local File Sink
,Halo Visualization
,PTZ Tracking (ONVIF)
.md),Multi-Label Classification Model
,Corner Visualization
,Clip Comparison
,Roboflow Dataset Upload
,Line Counter Visualization
,Mask Visualization
,QR Code Generator
,SIFT
,Polygon Visualization
,Dot Visualization
,Image Convert Grayscale
,VLM as Detector
,Slack Notification
,Dynamic Zone
,Icon Visualization
,Roboflow Dataset Upload
,Depth Estimation
,Roboflow Custom Metadata
,Image Blur
,Trace Visualization
,Absolute Static Crop
,Image Preprocessing
,Polygon Zone Visualization
,Object Detection Model
- outputs:
Crop Visualization
,Ellipse Visualization
,Stability AI Inpainting
,Stability AI Image Generation
,Cache Get
,Circle Visualization
,YOLO-World Model
,Model Comparison Visualization
,Webhook Sink
,Stability AI Outpainting
,Bounding Box Visualization
,Time in Zone
,Time in Zone
,Path Deviation
,Background Color Visualization
,Llama 3.2 Vision
,LMM
,Twilio SMS Notification
,Label Visualization
,Triangle Visualization
,Dynamic Crop
,Florence-2 Model
,Detections Stitch
,Instance Segmentation Model
,Florence-2 Model
,Keypoint Visualization
,Halo Visualization
,PTZ Tracking (ONVIF)
.md),Corner Visualization
,Line Counter Visualization
,LMM For Classification
,CLIP Embedding Model
,Time in Zone
,Perception Encoder Embedding Model
,Dot Visualization
,Size Measurement
,Anthropic Claude
,Slack Notification
,Roboflow Dataset Upload
,Icon Visualization
,Roboflow Custom Metadata
,Cache Set
,Distance Measurement
,CogVLM
,Polygon Zone Visualization
,OpenAI
,Email Notification
,Segment Anything 2 Model
,Detections Classes Replacement
,Google Gemini
,SIFT Comparison
,Line Counter
,Pixel Color Count
,Image Threshold
,Perspective Correction
,Classification Label Visualization
,Model Monitoring Inference Aggregator
,Path Deviation
,Reference Path Visualization
,Local File Sink
,OpenAI
,Instance Segmentation Model
,Color Visualization
,Clip Comparison
,Roboflow Dataset Upload
,Mask Visualization
,QR Code Generator
,OpenAI
,Polygon Visualization
,Moondream2
,Image Blur
,Trace Visualization
,Line Counter
,Google Vision OCR
,Image Preprocessing
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Single-Label Classification Model
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..model_id
(roboflow_model_id
): Roboflow model identifier..confidence
(float_zero_to_one
): Confidence threshold for predictions..disable_active_learning
(boolean
): Boolean flag to disable project-level active learning for this block..active_learning_target_dataset
(roboflow_project
): Target dataset for active learning, if enabled..
-
output
predictions
(classification_prediction
): Predictions from classifier.inference_id
(string
): String value.
Example JSON definition of step Single-Label Classification Model
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/roboflow_classification_model@v1",
"images": "$inputs.image",
"model_id": "my_project/3",
"confidence": 0.3,
"disable_active_learning": true,
"active_learning_target_dataset": "my_project"
}