Single-Label Classification Model¶
Run inference on a multi-class classification model hosted on or uploaded to Roboflow.
You can query any model that is private to your account, or any public model available on Roboflow Universe.
You will need to set your Roboflow API key in your Inference environment to use this block. To learn more about setting your Roboflow API key, refer to the Inference documentation.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/roboflow_classification_model@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
model_id |
str |
Roboflow model identifier. | ✅ |
confidence |
float |
Confidence threshold for predictions. | ✅ |
disable_active_learning |
bool |
Parameter to decide if Active Learning data sampling is disabled for the model. | ✅ |
active_learning_target_dataset |
str |
Target dataset for Active Learning data sampling - see Roboflow Active Learning docs for more information. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Check what blocks you can connect to Single-Label Classification Model
in version v2
.
- inputs:
Reference Path Visualization
,Label Visualization
,Polygon Zone Visualization
,Single-Label Classification Model
,Model Monitoring Inference Aggregator
,Roboflow Dataset Upload
,Stability AI Inpainting
,Triangle Visualization
,Absolute Static Crop
,Trace Visualization
,Halo Visualization
,Local File Sink
,Ellipse Visualization
,SIFT
,SIFT Comparison
,Identify Outliers
,Slack Notification
,Pixelate Visualization
,Image Blur
,Clip Comparison
,Email Notification
,Dot Visualization
,Twilio SMS Notification
,Model Comparison Visualization
,Classification Label Visualization
,VLM as Detector
,Dynamic Crop
,SIFT Comparison
,Image Slicer
,Mask Visualization
,VLM as Classifier
,Perspective Correction
,Background Color Visualization
,Crop Visualization
,Grid Visualization
,Relative Static Crop
,Line Counter Visualization
,Detections Consensus
,Webhook Sink
,VLM as Classifier
,Image Convert Grayscale
,Image Contours
,Stitch Images
,JSON Parser
,Blur Visualization
,Image Threshold
,Keypoint Detection Model
,Color Visualization
,Identify Changes
,Image Preprocessing
,Roboflow Custom Metadata
,Multi-Label Classification Model
,Instance Segmentation Model
,VLM as Detector
,Polygon Visualization
,Object Detection Model
,Circle Visualization
,Camera Focus
,Roboflow Dataset Upload
,Bounding Box Visualization
,Corner Visualization
,Keypoint Visualization
- outputs:
Multi-Label Classification Model
,Webhook Sink
,Model Monitoring Inference Aggregator
,Single-Label Classification Model
,Roboflow Dataset Upload
,Object Detection Model
,Keypoint Detection Model
,Single-Label Classification Model
,Roboflow Custom Metadata
,Instance Segmentation Model
,Keypoint Detection Model
,Multi-Label Classification Model
,Detections Classes Replacement
,Instance Segmentation Model
,Object Detection Model
,Classification Label Visualization
,Roboflow Dataset Upload
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Single-Label Classification Model
in version v2
has.
Bindings
-
input
images
(image
): The image to infer on.model_id
(roboflow_model_id
): Roboflow model identifier.confidence
(float_zero_to_one
): Confidence threshold for predictions.disable_active_learning
(boolean
): Parameter to decide if Active Learning data sampling is disabled for the model.active_learning_target_dataset
(roboflow_project
): Target dataset for Active Learning data sampling - see Roboflow Active Learning docs for more information.
-
output
predictions
(classification_prediction
): Predictions from classifier.inference_id
(inference_id
): Inference identifier.model_id
(roboflow_model_id
): Roboflow model id.
Example JSON definition of step Single-Label Classification Model
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/roboflow_classification_model@v2",
"images": "$inputs.image",
"model_id": "my_project/3",
"confidence": 0.3,
"disable_active_learning": true,
"active_learning_target_dataset": "my_project"
}
Run inference on a multi-class classification model hosted on or uploaded to Roboflow.
You can query any model that is private to your account, or any public model available on Roboflow Universe.
You will need to set your Roboflow API key in your Inference environment to use this block. To learn more about setting your Roboflow API key, refer to the Inference documentation.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/roboflow_classification_model@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
model_id |
str |
Roboflow model identifier. | ✅ |
confidence |
float |
Confidence threshold for predictions. | ✅ |
disable_active_learning |
bool |
Parameter to decide if Active Learning data sampling is disabled for the model. | ✅ |
active_learning_target_dataset |
str |
Target dataset for Active Learning data sampling - see Roboflow Active Learning docs for more information. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Check what blocks you can connect to Single-Label Classification Model
in version v1
.
- inputs:
Reference Path Visualization
,Label Visualization
,Polygon Zone Visualization
,Single-Label Classification Model
,Model Monitoring Inference Aggregator
,Roboflow Dataset Upload
,Stability AI Inpainting
,Triangle Visualization
,Absolute Static Crop
,Trace Visualization
,Halo Visualization
,Local File Sink
,Ellipse Visualization
,SIFT
,SIFT Comparison
,Identify Outliers
,Slack Notification
,Pixelate Visualization
,Image Blur
,Clip Comparison
,Email Notification
,Dot Visualization
,Twilio SMS Notification
,Model Comparison Visualization
,Classification Label Visualization
,VLM as Detector
,Dynamic Crop
,SIFT Comparison
,Image Slicer
,Mask Visualization
,VLM as Classifier
,Perspective Correction
,Background Color Visualization
,Crop Visualization
,Grid Visualization
,Relative Static Crop
,Line Counter Visualization
,Detections Consensus
,Webhook Sink
,VLM as Classifier
,Image Convert Grayscale
,Image Contours
,Stitch Images
,JSON Parser
,Blur Visualization
,Image Threshold
,Keypoint Detection Model
,Color Visualization
,Identify Changes
,Image Preprocessing
,Roboflow Custom Metadata
,Multi-Label Classification Model
,Instance Segmentation Model
,VLM as Detector
,Polygon Visualization
,Object Detection Model
,Circle Visualization
,Camera Focus
,Roboflow Dataset Upload
,Bounding Box Visualization
,Corner Visualization
,Keypoint Visualization
- outputs:
Reference Path Visualization
,Line Counter
,OpenAI
,LMM For Classification
,Roboflow Dataset Upload
,Stability AI Inpainting
,Trace Visualization
,Path Deviation
,Halo Visualization
,Instance Segmentation Model
,SIFT Comparison
,Email Notification
,Anthropic Claude
,Path Deviation
,Classification Label Visualization
,Mask Visualization
,Background Color Visualization
,Crop Visualization
,Google Gemini
,Image Threshold
,Roboflow Custom Metadata
,Bounding Box Visualization
,Cache Set
,YOLO-World Model
,Instance Segmentation Model
,Distance Measurement
,LMM
,CogVLM
,Florence-2 Model
,Size Measurement
,Roboflow Dataset Upload
,Keypoint Visualization
,Cache Get
,Model Monitoring Inference Aggregator
,Polygon Zone Visualization
,Pixel Color Count
,Triangle Visualization
,Local File Sink
,Ellipse Visualization
,Detections Stitch
,Detections Classes Replacement
,Slack Notification
,Clip Comparison
,Image Blur
,Twilio SMS Notification
,Dot Visualization
,Model Comparison Visualization
,Dynamic Crop
,Perspective Correction
,Line Counter Visualization
,Time in Zone
,Webhook Sink
,Google Vision OCR
,Time in Zone
,Florence-2 Model
,Color Visualization
,Image Preprocessing
,CLIP Embedding Model
,Polygon Visualization
,Segment Anything 2 Model
,OpenAI
,Circle Visualization
,Line Counter
,Label Visualization
,Corner Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Single-Label Classification Model
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on.model_id
(roboflow_model_id
): Roboflow model identifier.confidence
(float_zero_to_one
): Confidence threshold for predictions.disable_active_learning
(boolean
): Parameter to decide if Active Learning data sampling is disabled for the model.active_learning_target_dataset
(roboflow_project
): Target dataset for Active Learning data sampling - see Roboflow Active Learning docs for more information.
-
output
predictions
(classification_prediction
): Predictions from classifier.inference_id
(string
): String value.
Example JSON definition of step Single-Label Classification Model
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/roboflow_classification_model@v1",
"images": "$inputs.image",
"model_id": "my_project/3",
"confidence": 0.3,
"disable_active_learning": true,
"active_learning_target_dataset": "my_project"
}