Stability AI Inpainting¶
Class: StabilityAIInpaintingBlockV1
The block wraps Stability AI inpainting API and let users use instance segmentation results to change the content of images in a creative way.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/stability_ai_inpainting@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
prompt |
str |
Prompt to inpainting model (what you wish to see).. | ✅ |
negative_prompt |
str |
Negative prompt to inpainting model (what you do not wish to see).. | ✅ |
api_key |
str |
Your Stability AI API key.. | ✅ |
invert_segmentation_mask |
bool |
Invert segmentation mask to inpaint background instead of foreground.. | ✅ |
preset |
StabilityAIPresets |
Optional preset to apply when outpainting the image (what you wish to see). If not provided, the image will be outpainted without any preset. Avaliable presets: 3d-model, analog-film, anime, cinematic, comic-book, digital-art, enhance, fantasy-art, isometric, line-art, low-poly, modeling-compound, neon-punk, origami, photographic, pixel-art, tile-texture. | ❌ |
seed |
int |
A specific value that is used to guide the 'randomness' of the generation. If not provided, a random seed is used. Must be a number between 0 and 4294967294. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Stability AI Inpainting
in version v1
.
- inputs:
Line Counter
,Keypoint Detection Model
,Halo Visualization
,OpenAI
,Stability AI Image Generation
,Model Comparison Visualization
,Keypoint Visualization
,Crop Visualization
,Image Blur
,Bounding Box Visualization
,Distance Measurement
,Line Counter
,Roboflow Dataset Upload
,Template Matching
,Mask Visualization
,Image Slicer
,Detections Classes Replacement
,Instance Segmentation Model
,Instance Segmentation Model
,VLM as Classifier
,JSON Parser
,Ellipse Visualization
,Email Notification
,Bounding Rectangle
,OpenAI
,Dynamic Zone
,Slack Notification
,VLM as Detector
,Twilio SMS Notification
,Webhook Sink
,Label Visualization
,Google Vision OCR
,Stability AI Outpainting
,CSV Formatter
,Single-Label Classification Model
,Polygon Visualization
,Velocity
,Identify Changes
,Model Monitoring Inference Aggregator
,Roboflow Custom Metadata
,Reference Path Visualization
,Florence-2 Model
,OCR Model
,Detections Transformation
,Anthropic Claude
,VLM as Detector
,Camera Calibration
,Image Preprocessing
,Image Contours
,Line Counter Visualization
,Florence-2 Model
,LMM For Classification
,Corner Visualization
,Clip Comparison
,Pixel Color Count
,Stitch Images
,Depth Estimation
,SIFT
,Time in Zone
,Blur Visualization
,Image Convert Grayscale
,Background Color Visualization
,Image Slicer
,Dynamic Crop
,Local File Sink
,Perspective Correction
,Stitch OCR Detections
,Circle Visualization
,Triangle Visualization
,Dot Visualization
,Detections Filter
,SIFT Comparison
,CogVLM
,Path Deviation
,Object Detection Model
,Segment Anything 2 Model
,VLM as Classifier
,LMM
,Color Visualization
,Stability AI Inpainting
,Classification Label Visualization
,OpenAI
,Detection Offset
,Absolute Static Crop
,Image Threshold
,Detections Consensus
,Time in Zone
,Llama 3.2 Vision
,Pixelate Visualization
,Trace Visualization
,Detections Stabilizer
,Camera Focus
,Roboflow Dataset Upload
,Grid Visualization
,Google Gemini
,PTZ Tracking (ONVIF)
.md),SIFT Comparison
,Multi-Label Classification Model
,Relative Static Crop
,Detections Stitch
,Path Deviation
,Polygon Zone Visualization
,Identify Outliers
- outputs:
Keypoint Detection Model
,Gaze Detection
,Halo Visualization
,OpenAI
,Stability AI Image Generation
,Model Comparison Visualization
,Keypoint Visualization
,Crop Visualization
,Image Blur
,Bounding Box Visualization
,Roboflow Dataset Upload
,Template Matching
,Mask Visualization
,SmolVLM2
,VLM as Classifier
,Image Slicer
,Instance Segmentation Model
,Instance Segmentation Model
,QR Code Detection
,CLIP Embedding Model
,Ellipse Visualization
,OpenAI
,VLM as Detector
,Qwen2.5-VL
,Label Visualization
,Google Vision OCR
,Stability AI Outpainting
,Single-Label Classification Model
,Buffer
,Polygon Visualization
,Barcode Detection
,Dominant Color
,Reference Path Visualization
,Florence-2 Model
,OCR Model
,VLM as Detector
,Anthropic Claude
,Image Preprocessing
,Line Counter Visualization
,Florence-2 Model
,Image Contours
,Camera Calibration
,Single-Label Classification Model
,LMM For Classification
,Clip Comparison
,Corner Visualization
,Pixel Color Count
,Stitch Images
,SIFT
,Depth Estimation
,Time in Zone
,Perception Encoder Embedding Model
,Blur Visualization
,Image Convert Grayscale
,Image Slicer
,Background Color Visualization
,Dynamic Crop
,Perspective Correction
,Circle Visualization
,Triangle Visualization
,Dot Visualization
,CogVLM
,Multi-Label Classification Model
,Object Detection Model
,Segment Anything 2 Model
,VLM as Classifier
,LMM
,Color Visualization
,OpenAI
,Classification Label Visualization
,Stability AI Inpainting
,Byte Tracker
,Moondream2
,Absolute Static Crop
,Image Threshold
,Keypoint Detection Model
,Llama 3.2 Vision
,Pixelate Visualization
,Trace Visualization
,Detections Stabilizer
,Camera Focus
,Roboflow Dataset Upload
,Clip Comparison
,YOLO-World Model
,Google Gemini
,SIFT Comparison
,Multi-Label Classification Model
,Relative Static Crop
,Detections Stitch
,Object Detection Model
,Polygon Zone Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Stability AI Inpainting
in version v1
has.
Bindings
-
input
image
(image
): The image to inpaint..segmentation_mask
(instance_segmentation_prediction
): Model predictions from segmentation model..prompt
(string
): Prompt to inpainting model (what you wish to see)..negative_prompt
(string
): Negative prompt to inpainting model (what you do not wish to see)..api_key
(Union[secret
,string
]): Your Stability AI API key..invert_segmentation_mask
(boolean
): Invert segmentation mask to inpaint background instead of foreground..seed
(integer
): A specific value that is used to guide the 'randomness' of the generation. If not provided, a random seed is used. Must be a number between 0 and 4294967294.
-
output
image
(image
): Image in workflows.
Example JSON definition of step Stability AI Inpainting
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/stability_ai_inpainting@v1",
"image": "$inputs.image",
"segmentation_mask": "$steps.model.predictions",
"prompt": "my prompt",
"negative_prompt": "my prompt",
"api_key": "xxx-xxx",
"invert_segmentation_mask": "<block_does_not_provide_example>",
"preset": "3d-model",
"seed": 200
}