Template Matching¶
Class: TemplateMatchingBlockV1
Source: inference.core.workflows.core_steps.classical_cv.template_matching.v1.TemplateMatchingBlockV1
Apply Template Matching to an image. Block is based on OpenCV library function called cv2.matchTemplate(...)
that searches for a template image within a larger image. This is often used in computer vision tasks where
you need to find a specific object or pattern in a scene, like detecting logos, objects, or
specific regions in an image.
Please take into account the following characteristics of block: * it tends to produce overlapping and duplicated predictions, hence we added NMS which can be disabled * block may find very large number of matches in some cases due to simplicity of methods being used - in that cases NMS may be computationally intractable and should be disabled
Output from the block is in a form of sv.Detections objects which can be nicely paired with other blocks accepting this kind of input (like visualization blocks).
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/template_matching@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
matching_threshold |
float |
The threshold value for template matching.. | ✅ |
apply_nms |
bool |
Flag to decide if NMS should be applied at the output detections.. | ✅ |
nms_threshold |
float |
The threshold value NMS procedure (if to be applied).. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Template Matching
in version v1
.
- inputs:
Identify Outliers
,Classification Label Visualization
,Background Color Visualization
,Webhook Sink
,Dynamic Crop
,Mask Visualization
,Clip Comparison
,Twilio SMS Notification
,Absolute Static Crop
,Model Monitoring Inference Aggregator
,Stability AI Image Generation
,Image Blur
,Roboflow Dataset Upload
,Identify Changes
,Circle Visualization
,Crop Visualization
,VLM as Detector
,JSON Parser
,SIFT Comparison
,Image Preprocessing
,VLM as Classifier
,Model Comparison Visualization
,Stitch Images
,Bounding Box Visualization
,Perspective Correction
,SIFT Comparison
,Relative Static Crop
,Color Visualization
,Slack Notification
,Ellipse Visualization
,Reference Path Visualization
,Blur Visualization
,Pixelate Visualization
,Email Notification
,VLM as Detector
,Keypoint Visualization
,Camera Focus
,Grid Visualization
,Image Convert Grayscale
,Image Threshold
,Trace Visualization
,Polygon Visualization
,Triangle Visualization
,Stability AI Inpainting
,Cosine Similarity
,Detections Consensus
,Halo Visualization
,Dot Visualization
,Polygon Zone Visualization
,Local File Sink
,Roboflow Custom Metadata
,VLM as Classifier
,Camera Calibration
,Gaze Detection
,SIFT
,Corner Visualization
,Image Contours
,Line Counter Visualization
,Roboflow Dataset Upload
,Image Slicer
,Image Slicer
,Label Visualization
- outputs:
Identify Outliers
,Classification Label Visualization
,Background Color Visualization
,Webhook Sink
,Dynamic Crop
,Mask Visualization
,Twilio SMS Notification
,Segment Anything 2 Model
,Detection Offset
,Model Monitoring Inference Aggregator
,Florence-2 Model
,Absolute Static Crop
,Image Blur
,Roboflow Dataset Upload
,Identify Changes
,Line Counter
,Circle Visualization
,Crop Visualization
,SIFT Comparison
,Path Deviation
,Stitch OCR Detections
,Velocity
,Detections Stitch
,Image Preprocessing
,Pixel Color Count
,Detections Stabilizer
,Path Deviation
,Line Counter
,Time in Zone
,Model Comparison Visualization
,Stitch Images
,Bounding Box Visualization
,Keypoint Detection Model
,Dominant Color
,Perspective Correction
,SIFT Comparison
,Color Visualization
,Slack Notification
,Ellipse Visualization
,Reference Path Visualization
,Blur Visualization
,Pixelate Visualization
,Anthropic Claude
,Email Notification
,Instance Segmentation Model
,Keypoint Visualization
,Time in Zone
,Byte Tracker
,Florence-2 Model
,Detections Filter
,Detections Transformation
,Grid Visualization
,Trace Visualization
,Image Threshold
,Triangle Visualization
,Detections Consensus
,Polygon Visualization
,Keypoint Detection Model
,Halo Visualization
,Dot Visualization
,Detections Merge
,Dynamic Zone
,Size Measurement
,Instance Segmentation Model
,Roboflow Custom Metadata
,Detections Classes Replacement
,Object Detection Model
,Corner Visualization
,Image Contours
,Roboflow Dataset Upload
,Line Counter Visualization
,Image Slicer
,Byte Tracker
,Image Slicer
,Byte Tracker
,Label Visualization
,Distance Measurement
,Object Detection Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Template Matching
in version v1
has.
Bindings
-
input
image
(image
): The input image for this step..template
(image
): The template image for this step..matching_threshold
(float
): The threshold value for template matching..apply_nms
(boolean
): Flag to decide if NMS should be applied at the output detections..nms_threshold
(float_zero_to_one
): The threshold value NMS procedure (if to be applied)..
-
output
predictions
(object_detection_prediction
): Prediction with detected bounding boxes in form of sv.Detections(...) object.number_of_matches
(integer
): Integer value.
Example JSON definition of step Template Matching
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/template_matching@v1",
"image": "$inputs.image",
"template": "$inputs.template",
"matching_threshold": 0.8,
"apply_nms": "$inputs.apply_nms",
"nms_threshold": "$inputs.nms_threshold"
}