Triangle Visualization¶
Class: TriangleVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.triangle.v1.TriangleVisualizationBlockV1
The TriangleVisualization
block draws triangle markers on an image at specific coordinates
based on provided detections using Supervision's sv.TriangleAnnotator
.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/triangle_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
color_palette |
str |
Select a color palette for the visualised elements.. | ✅ |
palette_size |
int |
Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes.. | ✅ |
custom_colors |
List[str] |
Define a list of custom colors for bounding boxes in HEX format.. | ✅ |
color_axis |
str |
Choose how bounding box colors are assigned.. | ✅ |
position |
str |
The anchor position for placing the triangle.. | ✅ |
base |
int |
Base width of the triangle in pixels.. | ✅ |
height |
int |
Height of the triangle in pixels.. | ✅ |
outline_thickness |
int |
Thickness of the outline of the triangle in pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Triangle Visualization
in version v1
.
- inputs:
Byte Tracker
,Distance Measurement
,Time in Zone
,Dot Visualization
,Blur Visualization
,Perspective Correction
,Clip Comparison
,OpenAI
,Keypoint Detection Model
,EasyOCR
,Stability AI Outpainting
,VLM as Classifier
,Twilio SMS Notification
,Google Vision OCR
,Roboflow Dataset Upload
,Email Notification
,Instance Segmentation Model
,Image Convert Grayscale
,Detections Stabilizer
,Bounding Box Visualization
,Llama 3.2 Vision
,Reference Path Visualization
,Image Preprocessing
,Local File Sink
,OpenAI
,Image Slicer
,Detections Stitch
,SIFT Comparison
,Velocity
,Object Detection Model
,Buffer
,Stability AI Image Generation
,Dimension Collapse
,SIFT Comparison
,Roboflow Custom Metadata
,Model Comparison Visualization
,Dynamic Zone
,Line Counter
,Time in Zone
,Relative Static Crop
,Polygon Visualization
,Slack Notification
,JSON Parser
,Triangle Visualization
,YOLO-World Model
,Detections Classes Replacement
,Bounding Rectangle
,Circle Visualization
,Label Visualization
,VLM as Detector
,Google Gemini
,Detections Merge
,CSV Formatter
,Path Deviation
,Detections Consensus
,Moondream2
,Segment Anything 2 Model
,Polygon Zone Visualization
,VLM as Classifier
,Identify Outliers
,LMM For Classification
,Morphological Transformation
,Size Measurement
,Corner Visualization
,LMM
,Pixel Color Count
,PTZ Tracking (ONVIF)
.md),Florence-2 Model
,Grid Visualization
,Image Threshold
,Florence-2 Model
,Halo Visualization
,Multi-Label Classification Model
,Detections Combine
,Detection Offset
,CogVLM
,Byte Tracker
,Line Counter Visualization
,Stitch OCR Detections
,VLM as Detector
,Keypoint Detection Model
,Identify Changes
,Camera Focus
,SIFT
,Clip Comparison
,Image Slicer
,Keypoint Visualization
,Template Matching
,OCR Model
,Line Counter
,Instance Segmentation Model
,Dynamic Crop
,Roboflow Dataset Upload
,Mask Visualization
,Background Color Visualization
,Webhook Sink
,Camera Calibration
,Depth Estimation
,QR Code Generator
,Trace Visualization
,Time in Zone
,Detections Transformation
,Contrast Equalization
,Byte Tracker
,Overlap Filter
,Crop Visualization
,Object Detection Model
,Pixelate Visualization
,Model Monitoring Inference Aggregator
,Gaze Detection
,Anthropic Claude
,Image Contours
,Path Deviation
,OpenAI
,Detections Filter
,Classification Label Visualization
,Image Blur
,Absolute Static Crop
,Stability AI Inpainting
,Icon Visualization
,Ellipse Visualization
,Color Visualization
,Single-Label Classification Model
,Stitch Images
- outputs:
VLM as Classifier
,LMM For Classification
,Polygon Zone Visualization
,Dot Visualization
,Morphological Transformation
,Perspective Correction
,Blur Visualization
,Clip Comparison
,Corner Visualization
,LMM
,Pixel Color Count
,Florence-2 Model
,Image Threshold
,Florence-2 Model
,Halo Visualization
,OpenAI
,Keypoint Detection Model
,Multi-Label Classification Model
,CogVLM
,EasyOCR
,Byte Tracker
,Line Counter Visualization
,Perception Encoder Embedding Model
,VLM as Detector
,Stability AI Outpainting
,VLM as Classifier
,Keypoint Detection Model
,Google Vision OCR
,CLIP Embedding Model
,Camera Focus
,Roboflow Dataset Upload
,SIFT
,Instance Segmentation Model
,Clip Comparison
,Image Slicer
,Image Convert Grayscale
,Keypoint Visualization
,Template Matching
,OCR Model
,Llama 3.2 Vision
,Bounding Box Visualization
,Detections Stabilizer
,Instance Segmentation Model
,Reference Path Visualization
,Dynamic Crop
,Roboflow Dataset Upload
,Mask Visualization
,Image Preprocessing
,Qwen2.5-VL
,Background Color Visualization
,OpenAI
,Camera Calibration
,Depth Estimation
,Image Slicer
,Detections Stitch
,Dominant Color
,Trace Visualization
,Object Detection Model
,Contrast Equalization
,Buffer
,Crop Visualization
,Stability AI Image Generation
,Stitch Images
,SmolVLM2
,SIFT Comparison
,Object Detection Model
,Model Comparison Visualization
,Pixelate Visualization
,Gaze Detection
,Anthropic Claude
,Time in Zone
,QR Code Detection
,Relative Static Crop
,Polygon Visualization
,Barcode Detection
,Image Contours
,OpenAI
,Triangle Visualization
,YOLO-World Model
,Single-Label Classification Model
,Classification Label Visualization
,Circle Visualization
,Image Blur
,Label Visualization
,VLM as Detector
,Google Gemini
,Multi-Label Classification Model
,Stability AI Inpainting
,Absolute Static Crop
,Icon Visualization
,Ellipse Visualization
,Color Visualization
,Single-Label Classification Model
,Moondream2
,Segment Anything 2 Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Triangle Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions
(Union[object_detection_prediction
,instance_segmentation_prediction
,keypoint_detection_prediction
]): Model predictions to visualize..color_palette
(string
): Select a color palette for the visualised elements..palette_size
(integer
): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..custom_colors
(list_of_values
): Define a list of custom colors for bounding boxes in HEX format..color_axis
(string
): Choose how bounding box colors are assigned..position
(string
): The anchor position for placing the triangle..base
(integer
): Base width of the triangle in pixels..height
(integer
): Height of the triangle in pixels..outline_thickness
(integer
): Thickness of the outline of the triangle in pixels..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Triangle Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/triangle_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.object_detection_model.predictions",
"color_palette": "DEFAULT",
"palette_size": 10,
"custom_colors": [
"#FF0000",
"#00FF00",
"#0000FF"
],
"color_axis": "CLASS",
"position": "CENTER",
"base": 10,
"height": 10,
"outline_thickness": 2
}