VLM as Detector¶
v2¶
Class: VLMAsDetectorBlockV2
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.formatters.vlm_as_detector.v2.VLMAsDetectorBlockV2
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
The block expects string input that would be produced by blocks exposing Large Language Models (LLMs) and Visual Language Models (VLMs). Input is parsed to object-detection prediction and returned as block output.
Accepted formats:
-
valid JSON strings
-
JSON documents wrapped with Markdown tags
Example
{"my": "json"}
Details regarding block behavior:
-
error_status
is setTrue
whenever parsing cannot be completed -
in case of multiple markdown blocks with raw JSON content - only first will be parsed
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/vlm_as_detector@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
classes |
List[str] |
List of all classes used by the model, required to generate mapping between class name and class id.. | ✅ |
model_type |
str |
Type of the model that generated prediction. | ❌ |
task_type |
str |
Task type to performed by model.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to VLM as Detector
in version v2
.
- inputs:
Image Threshold
,Image Convert Grayscale
,Anthropic Claude
,OpenAI
,SIFT Comparison
,Florence-2 Model
,Absolute Static Crop
,Pixelate Visualization
,Clip Comparison
,Dimension Collapse
,SIFT
,Line Counter Visualization
,Stitch Images
,Stability AI Image Generation
,Dot Visualization
,Mask Visualization
,Image Slicer
,Dynamic Zone
,Background Color Visualization
,Florence-2 Model
,Triangle Visualization
,Image Slicer
,Image Blur
,Camera Focus
,Grid Visualization
,Polygon Zone Visualization
,Blur Visualization
,Crop Visualization
,Label Visualization
,Classification Label Visualization
,Depth Estimation
,Image Preprocessing
,Model Comparison Visualization
,Stability AI Inpainting
,Llama 3.2 Vision
,Reference Path Visualization
,Ellipse Visualization
,Google Gemini
,Bounding Box Visualization
,Halo Visualization
,Image Contours
,Corner Visualization
,Camera Calibration
,Size Measurement
,Clip Comparison
,Buffer
,Circle Visualization
,Perspective Correction
,Dynamic Crop
,Polygon Visualization
,Relative Static Crop
,Trace Visualization
,Keypoint Visualization
,OpenAI
,Color Visualization
- outputs:
Keypoint Detection Model
,Gaze Detection
,Detections Classes Replacement
,Florence-2 Model
,Detection Offset
,Distance Measurement
,Pixelate Visualization
,Single-Label Classification Model
,Mask Visualization
,Object Detection Model
,Overlap Filter
,Triangle Visualization
,Path Deviation
,Polygon Zone Visualization
,Model Comparison Visualization
,Crop Visualization
,Classification Label Visualization
,Segment Anything 2 Model
,Keypoint Detection Model
,Reference Path Visualization
,Multi-Label Classification Model
,Twilio SMS Notification
,Line Counter
,Bounding Box Visualization
,Roboflow Custom Metadata
,Byte Tracker
,Size Measurement
,Circle Visualization
,Perspective Correction
,Slack Notification
,Polygon Visualization
,Detections Transformation
,Instance Segmentation Model
,Trace Visualization
,Detections Merge
,Webhook Sink
,Color Visualization
,Detections Consensus
,Detections Stitch
,SIFT Comparison
,Line Counter Visualization
,Multi-Label Classification Model
,Line Counter
,Dot Visualization
,Detections Filter
,Dynamic Zone
,Instance Segmentation Model
,Background Color Visualization
,Florence-2 Model
,Model Monitoring Inference Aggregator
,Detections Stabilizer
,Stitch OCR Detections
,Template Matching
,Roboflow Dataset Upload
,Roboflow Dataset Upload
,Time in Zone
,Email Notification
,Path Deviation
,Object Detection Model
,Label Visualization
,Blur Visualization
,Byte Tracker
,Ellipse Visualization
,ONVIF Control
,Byte Tracker
,Halo Visualization
,Corner Visualization
,Time in Zone
,Dynamic Crop
,Single-Label Classification Model
,Keypoint Visualization
,Velocity
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
VLM as Detector
in version v2
has.
Bindings
-
input
image
(image
): The image which was the base to generate VLM prediction.vlm_output
(language_model_output
): The string with raw classification prediction to parse..classes
(list_of_values
): List of all classes used by the model, required to generate mapping between class name and class id..
-
output
error_status
(boolean
): Boolean flag.predictions
(object_detection_prediction
): Prediction with detected bounding boxes in form of sv.Detections(...) object.inference_id
(inference_id
): Inference identifier.
Example JSON definition of step VLM as Detector
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/vlm_as_detector@v2",
"image": "$inputs.image",
"vlm_output": [
"$steps.lmm.output"
],
"classes": [
"$steps.lmm.classes",
"$inputs.classes",
[
"class_a",
"class_b"
]
],
"model_type": [
"google-gemini",
"anthropic-claude",
"florence-2"
],
"task_type": "<block_does_not_provide_example>"
}
v1¶
Class: VLMAsDetectorBlockV1
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.formatters.vlm_as_detector.v1.VLMAsDetectorBlockV1
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
The block expects string input that would be produced by blocks exposing Large Language Models (LLMs) and Visual Language Models (VLMs). Input is parsed to object-detection prediction and returned as block output.
Accepted formats:
-
valid JSON strings
-
JSON documents wrapped with Markdown tags
Example
{"my": "json"}
Details regarding block behavior:
-
error_status
is setTrue
whenever parsing cannot be completed -
in case of multiple markdown blocks with raw JSON content - only first will be parsed
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/vlm_as_detector@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
classes |
List[str] |
List of all classes used by the model, required to generate mapping between class name and class id.. | ✅ |
model_type |
str |
Type of the model that generated prediction. | ❌ |
task_type |
str |
Task type to performed by model.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to VLM as Detector
in version v1
.
- inputs:
Image Threshold
,Image Convert Grayscale
,Anthropic Claude
,OpenAI
,SIFT Comparison
,Florence-2 Model
,Absolute Static Crop
,Pixelate Visualization
,Clip Comparison
,Dimension Collapse
,SIFT
,Line Counter Visualization
,Stitch Images
,Stability AI Image Generation
,Dot Visualization
,Mask Visualization
,Image Slicer
,Dynamic Zone
,Background Color Visualization
,Florence-2 Model
,Triangle Visualization
,Image Slicer
,Image Blur
,Camera Focus
,Grid Visualization
,Polygon Zone Visualization
,Blur Visualization
,Crop Visualization
,Label Visualization
,Classification Label Visualization
,Depth Estimation
,Image Preprocessing
,Model Comparison Visualization
,Stability AI Inpainting
,Llama 3.2 Vision
,Reference Path Visualization
,Ellipse Visualization
,Google Gemini
,Bounding Box Visualization
,Halo Visualization
,Image Contours
,Corner Visualization
,Camera Calibration
,Size Measurement
,Clip Comparison
,Buffer
,Circle Visualization
,Perspective Correction
,Dynamic Crop
,Polygon Visualization
,Relative Static Crop
,Trace Visualization
,Keypoint Visualization
,OpenAI
,Color Visualization
- outputs:
Keypoint Detection Model
,CogVLM
,Anthropic Claude
,Cache Set
,Gaze Detection
,Google Vision OCR
,OpenAI
,Detections Classes Replacement
,Florence-2 Model
,Detection Offset
,Distance Measurement
,Pixelate Visualization
,Single-Label Classification Model
,OpenAI
,Stability AI Image Generation
,YOLO-World Model
,Mask Visualization
,Object Detection Model
,Overlap Filter
,Triangle Visualization
,Path Deviation
,Polygon Zone Visualization
,Model Comparison Visualization
,Crop Visualization
,Classification Label Visualization
,LMM
,Segment Anything 2 Model
,Keypoint Detection Model
,Reference Path Visualization
,Multi-Label Classification Model
,Twilio SMS Notification
,Line Counter
,Google Gemini
,Bounding Box Visualization
,Roboflow Custom Metadata
,Byte Tracker
,Size Measurement
,Circle Visualization
,Perspective Correction
,Slack Notification
,Pixel Color Count
,Polygon Visualization
,Detections Transformation
,Instance Segmentation Model
,Trace Visualization
,Detections Merge
,Webhook Sink
,Color Visualization
,Detections Consensus
,LMM For Classification
,Image Threshold
,Detections Stitch
,SIFT Comparison
,Line Counter Visualization
,Multi-Label Classification Model
,Line Counter
,Dot Visualization
,Detections Filter
,Dynamic Zone
,Instance Segmentation Model
,Background Color Visualization
,Florence-2 Model
,Model Monitoring Inference Aggregator
,Detections Stabilizer
,Stitch OCR Detections
,Template Matching
,Roboflow Dataset Upload
,Roboflow Dataset Upload
,Time in Zone
,Image Blur
,Email Notification
,Path Deviation
,Object Detection Model
,Label Visualization
,Blur Visualization
,CLIP Embedding Model
,Stability AI Inpainting
,Llama 3.2 Vision
,Image Preprocessing
,Byte Tracker
,Ellipse Visualization
,ONVIF Control
,Byte Tracker
,Halo Visualization
,Corner Visualization
,Clip Comparison
,Cache Get
,Time in Zone
,Dynamic Crop
,Single-Label Classification Model
,OpenAI
,Keypoint Visualization
,Velocity
,Local File Sink
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
VLM as Detector
in version v1
has.
Bindings
-
input
image
(image
): The image which was the base to generate VLM prediction.vlm_output
(language_model_output
): The string with raw classification prediction to parse..classes
(list_of_values
): List of all classes used by the model, required to generate mapping between class name and class id..
-
output
error_status
(boolean
): Boolean flag.predictions
(object_detection_prediction
): Prediction with detected bounding boxes in form of sv.Detections(...) object.inference_id
(string
): String value.
Example JSON definition of step VLM as Detector
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/vlm_as_detector@v1",
"image": "$inputs.image",
"vlm_output": [
"$steps.lmm.output"
],
"classes": [
"$steps.lmm.classes",
"$inputs.classes",
[
"class_a",
"class_b"
]
],
"model_type": [
"google-gemini",
"anthropic-claude",
"florence-2"
],
"task_type": "<block_does_not_provide_example>"
}