VLM as Detector¶
v2¶
Class: VLMAsDetectorBlockV2
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.formatters.vlm_as_detector.v2.VLMAsDetectorBlockV2
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
The block expects string input that would be produced by blocks exposing Large Language Models (LLMs) and Visual Language Models (VLMs). Input is parsed to object-detection prediction and returned as block output.
Accepted formats:
-
valid JSON strings
-
JSON documents wrapped with Markdown tags
Example
{"my": "json"}
Details regarding block behavior:
-
error_status
is setTrue
whenever parsing cannot be completed -
in case of multiple markdown blocks with raw JSON content - only first will be parsed
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/vlm_as_detector@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
classes |
List[str] |
List of all classes used by the model, required to generate mapping between class name and class id.. | ✅ |
model_type |
str |
Type of the model that generated prediction. | ❌ |
task_type |
str |
Task type to performed by model.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to VLM as Detector
in version v2
.
- inputs:
Crop Visualization
,Stitch Images
,Image Slicer
,OpenAI
,Relative Static Crop
,Ellipse Visualization
,Stability AI Inpainting
,Stability AI Image Generation
,Blur Visualization
,Circle Visualization
,Pixelate Visualization
,Model Comparison Visualization
,Stability AI Outpainting
,Google Gemini
,Bounding Box Visualization
,SIFT Comparison
,Grid Visualization
,Dimension Collapse
,Background Color Visualization
,Buffer
,Llama 3.2 Vision
,Image Slicer
,Image Contours
,Image Threshold
,Perspective Correction
,Label Visualization
,Camera Focus
,Triangle Visualization
,Dynamic Crop
,Florence-2 Model
,Camera Calibration
,Classification Label Visualization
,Reference Path Visualization
,Color Visualization
,Keypoint Visualization
,Florence-2 Model
,Halo Visualization
,Clip Comparison
,Corner Visualization
,Line Counter Visualization
,Mask Visualization
,QR Code Generator
,OpenAI
,SIFT
,Polygon Visualization
,Dot Visualization
,Size Measurement
,Image Convert Grayscale
,Anthropic Claude
,Clip Comparison
,Dynamic Zone
,Icon Visualization
,Depth Estimation
,Image Blur
,Trace Visualization
,Absolute Static Crop
,Image Preprocessing
,Polygon Zone Visualization
- outputs:
Crop Visualization
,Keypoint Detection Model
,Detections Filter
,Ellipse Visualization
,Stability AI Inpainting
,Blur Visualization
,Keypoint Detection Model
,Circle Visualization
,Pixelate Visualization
,Model Comparison Visualization
,Webhook Sink
,Detections Transformation
,Detections Consensus
,Single-Label Classification Model
,Bounding Box Visualization
,Time in Zone
,Time in Zone
,Path Deviation
,Background Color Visualization
,Object Detection Model
,Twilio SMS Notification
,Label Visualization
,Triangle Visualization
,Detections Stitch
,Florence-2 Model
,Dynamic Crop
,Instance Segmentation Model
,Florence-2 Model
,Keypoint Visualization
,Halo Visualization
,PTZ Tracking (ONVIF)
.md),Multi-Label Classification Model
,Corner Visualization
,Line Counter Visualization
,Time in Zone
,Template Matching
,Dot Visualization
,Size Measurement
,Slack Notification
,Roboflow Dataset Upload
,Icon Visualization
,Roboflow Custom Metadata
,Distance Measurement
,Byte Tracker
,Polygon Zone Visualization
,Email Notification
,Segment Anything 2 Model
,Detections Classes Replacement
,SIFT Comparison
,Line Counter
,Byte Tracker
,Gaze Detection
,Perspective Correction
,Byte Tracker
,Model Monitoring Inference Aggregator
,Instance Segmentation Model
,Classification Label Visualization
,Color Visualization
,Reference Path Visualization
,Overlap Filter
,Path Deviation
,Roboflow Dataset Upload
,Mask Visualization
,Velocity
,Stitch OCR Detections
,Polygon Visualization
,Detections Stabilizer
,Dynamic Zone
,Detection Offset
,Multi-Label Classification Model
,Trace Visualization
,Line Counter
,Detections Merge
,Single-Label Classification Model
,Object Detection Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
VLM as Detector
in version v2
has.
Bindings
-
input
image
(image
): The image which was the base to generate VLM prediction.vlm_output
(language_model_output
): The string with raw classification prediction to parse..classes
(list_of_values
): List of all classes used by the model, required to generate mapping between class name and class id..
-
output
error_status
(boolean
): Boolean flag.predictions
(object_detection_prediction
): Prediction with detected bounding boxes in form of sv.Detections(...) object.inference_id
(inference_id
): Inference identifier.
Example JSON definition of step VLM as Detector
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/vlm_as_detector@v2",
"image": "$inputs.image",
"vlm_output": [
"$steps.lmm.output"
],
"classes": [
"$steps.lmm.classes",
"$inputs.classes",
[
"class_a",
"class_b"
]
],
"model_type": [
"google-gemini",
"anthropic-claude",
"florence-2"
],
"task_type": "<block_does_not_provide_example>"
}
v1¶
Class: VLMAsDetectorBlockV1
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.formatters.vlm_as_detector.v1.VLMAsDetectorBlockV1
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
The block expects string input that would be produced by blocks exposing Large Language Models (LLMs) and Visual Language Models (VLMs). Input is parsed to object-detection prediction and returned as block output.
Accepted formats:
-
valid JSON strings
-
JSON documents wrapped with Markdown tags
Example
{"my": "json"}
Details regarding block behavior:
-
error_status
is setTrue
whenever parsing cannot be completed -
in case of multiple markdown blocks with raw JSON content - only first will be parsed
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/vlm_as_detector@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
classes |
List[str] |
List of all classes used by the model, required to generate mapping between class name and class id.. | ✅ |
model_type |
str |
Type of the model that generated prediction. | ❌ |
task_type |
str |
Task type to performed by model.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to VLM as Detector
in version v1
.
- inputs:
Crop Visualization
,Stitch Images
,Image Slicer
,OpenAI
,Relative Static Crop
,Ellipse Visualization
,Stability AI Inpainting
,Stability AI Image Generation
,Blur Visualization
,Circle Visualization
,Pixelate Visualization
,Model Comparison Visualization
,Stability AI Outpainting
,Google Gemini
,Bounding Box Visualization
,SIFT Comparison
,Grid Visualization
,Dimension Collapse
,Background Color Visualization
,Buffer
,Llama 3.2 Vision
,Image Slicer
,Image Contours
,Image Threshold
,Perspective Correction
,Label Visualization
,Camera Focus
,Triangle Visualization
,Dynamic Crop
,Florence-2 Model
,Camera Calibration
,Classification Label Visualization
,Reference Path Visualization
,Color Visualization
,Keypoint Visualization
,Florence-2 Model
,Halo Visualization
,Clip Comparison
,Corner Visualization
,Line Counter Visualization
,Mask Visualization
,QR Code Generator
,OpenAI
,SIFT
,Polygon Visualization
,Dot Visualization
,Size Measurement
,Image Convert Grayscale
,Anthropic Claude
,Clip Comparison
,Dynamic Zone
,Icon Visualization
,Depth Estimation
,Image Blur
,Trace Visualization
,Absolute Static Crop
,Image Preprocessing
,Polygon Zone Visualization
- outputs:
Crop Visualization
,Keypoint Detection Model
,Detections Filter
,Ellipse Visualization
,Stability AI Inpainting
,Stability AI Image Generation
,Blur Visualization
,Keypoint Detection Model
,Cache Get
,Circle Visualization
,Pixelate Visualization
,YOLO-World Model
,Model Comparison Visualization
,Webhook Sink
,Detections Transformation
,Detections Consensus
,Single-Label Classification Model
,Stability AI Outpainting
,Bounding Box Visualization
,Time in Zone
,Time in Zone
,Path Deviation
,Background Color Visualization
,Llama 3.2 Vision
,LMM
,Object Detection Model
,Twilio SMS Notification
,Label Visualization
,Triangle Visualization
,Detections Stitch
,Florence-2 Model
,Dynamic Crop
,Instance Segmentation Model
,Florence-2 Model
,Keypoint Visualization
,Halo Visualization
,PTZ Tracking (ONVIF)
.md),Multi-Label Classification Model
,Corner Visualization
,Line Counter Visualization
,LMM For Classification
,CLIP Embedding Model
,Time in Zone
,Template Matching
,Perception Encoder Embedding Model
,Dot Visualization
,Size Measurement
,Anthropic Claude
,Slack Notification
,Roboflow Dataset Upload
,Icon Visualization
,Roboflow Custom Metadata
,Cache Set
,Distance Measurement
,CogVLM
,Byte Tracker
,Polygon Zone Visualization
,OpenAI
,Email Notification
,Segment Anything 2 Model
,Detections Classes Replacement
,Google Gemini
,SIFT Comparison
,Line Counter
,Byte Tracker
,Pixel Color Count
,Gaze Detection
,Image Threshold
,Perspective Correction
,Byte Tracker
,Model Monitoring Inference Aggregator
,Instance Segmentation Model
,Classification Label Visualization
,Color Visualization
,Reference Path Visualization
,Overlap Filter
,Path Deviation
,Local File Sink
,OpenAI
,Clip Comparison
,Roboflow Dataset Upload
,Mask Visualization
,Velocity
,QR Code Generator
,OpenAI
,Stitch OCR Detections
,Polygon Visualization
,Detections Stabilizer
,Dynamic Zone
,Moondream2
,Detection Offset
,Multi-Label Classification Model
,Image Blur
,Trace Visualization
,Line Counter
,Detections Merge
,Google Vision OCR
,Image Preprocessing
,Single-Label Classification Model
,Object Detection Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
VLM as Detector
in version v1
has.
Bindings
-
input
image
(image
): The image which was the base to generate VLM prediction.vlm_output
(language_model_output
): The string with raw classification prediction to parse..classes
(list_of_values
): List of all classes used by the model, required to generate mapping between class name and class id..
-
output
error_status
(boolean
): Boolean flag.predictions
(object_detection_prediction
): Prediction with detected bounding boxes in form of sv.Detections(...) object.inference_id
(string
): String value.
Example JSON definition of step VLM as Detector
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/vlm_as_detector@v1",
"image": "$inputs.image",
"vlm_output": [
"$steps.lmm.output"
],
"classes": [
"$steps.lmm.classes",
"$inputs.classes",
[
"class_a",
"class_b"
]
],
"model_type": [
"google-gemini",
"anthropic-claude",
"florence-2"
],
"task_type": "<block_does_not_provide_example>"
}