VLM as Detector¶
v2¶
Class: VLMAsDetectorBlockV2
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.formatters.vlm_as_detector.v2.VLMAsDetectorBlockV2
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
The block expects string input that would be produced by blocks exposing Large Language Models (LLMs) and Visual Language Models (VLMs). Input is parsed to object-detection prediction and returned as block output.
Accepted formats:
-
valid JSON strings
-
JSON documents wrapped with Markdown tags
Example
{"my": "json"}
Details regarding block behavior:
-
error_status
is setTrue
whenever parsing cannot be completed -
in case of multiple markdown blocks with raw JSON content - only first will be parsed
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/vlm_as_detector@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
classes |
List[str] |
List of all classes used by the model, required to generate mapping between class name and class id.. | ✅ |
model_type |
str |
Type of the model that generated prediction. | ❌ |
task_type |
str |
Task type to performed by model.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to VLM as Detector
in version v2
.
- inputs:
Blur Visualization
,Camera Focus
,Image Threshold
,Polygon Zone Visualization
,Stability AI Inpainting
,Relative Static Crop
,Image Preprocessing
,Keypoint Visualization
,Background Color Visualization
,Grid Visualization
,Clip Comparison
,Image Convert Grayscale
,Trace Visualization
,Absolute Static Crop
,Color Visualization
,Perspective Correction
,Classification Label Visualization
,Circle Visualization
,Dimension Collapse
,Camera Calibration
,Pixelate Visualization
,Image Slicer
,OpenAI
,Clip Comparison
,Label Visualization
,Halo Visualization
,Triangle Visualization
,Reference Path Visualization
,Image Slicer
,Llama 3.2 Vision
,Google Gemini
,Line Counter Visualization
,Image Blur
,Size Measurement
,Corner Visualization
,Florence-2 Model
,SIFT Comparison
,Anthropic Claude
,Image Contours
,Dynamic Crop
,Polygon Visualization
,Depth Estimation
,SIFT
,Florence-2 Model
,Ellipse Visualization
,Mask Visualization
,Dynamic Zone
,Buffer
,Stitch Images
,Bounding Box Visualization
,Dot Visualization
,Stability AI Image Generation
,Model Comparison Visualization
,Crop Visualization
- outputs:
Detection Offset
,Line Counter
,Single-Label Classification Model
,Polygon Zone Visualization
,Detections Filter
,Slack Notification
,Time in Zone
,Instance Segmentation Model
,Trace Visualization
,Roboflow Custom Metadata
,Perspective Correction
,Distance Measurement
,Circle Visualization
,Triangle Visualization
,Halo Visualization
,Gaze Detection
,Line Counter
,Byte Tracker
,Size Measurement
,Byte Tracker
,Corner Visualization
,Email Notification
,Object Detection Model
,Detections Classes Replacement
,Template Matching
,Detections Consensus
,Roboflow Dataset Upload
,Overlap Filter
,Dynamic Crop
,Velocity
,Model Monitoring Inference Aggregator
,Segment Anything 2 Model
,Object Detection Model
,Model Comparison Visualization
,Keypoint Detection Model
,Crop Visualization
,Blur Visualization
,Keypoint Visualization
,Background Color Visualization
,Path Deviation
,Color Visualization
,Twilio SMS Notification
,Multi-Label Classification Model
,Classification Label Visualization
,Pixelate Visualization
,Stitch OCR Detections
,Label Visualization
,Time in Zone
,Reference Path Visualization
,Webhook Sink
,Single-Label Classification Model
,Roboflow Dataset Upload
,Line Counter Visualization
,Byte Tracker
,Multi-Label Classification Model
,Detections Transformation
,Florence-2 Model
,SIFT Comparison
,Detections Stabilizer
,Instance Segmentation Model
,Polygon Visualization
,Florence-2 Model
,Detections Merge
,Ellipse Visualization
,Mask Visualization
,Keypoint Detection Model
,Detections Stitch
,Bounding Box Visualization
,Dot Visualization
,Path Deviation
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
VLM as Detector
in version v2
has.
Bindings
-
input
image
(image
): The image which was the base to generate VLM prediction.vlm_output
(language_model_output
): The string with raw classification prediction to parse..classes
(list_of_values
): List of all classes used by the model, required to generate mapping between class name and class id..
-
output
error_status
(boolean
): Boolean flag.predictions
(object_detection_prediction
): Prediction with detected bounding boxes in form of sv.Detections(...) object.inference_id
(inference_id
): Inference identifier.
Example JSON definition of step VLM as Detector
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/vlm_as_detector@v2",
"image": "$inputs.image",
"vlm_output": [
"$steps.lmm.output"
],
"classes": [
"$steps.lmm.classes",
"$inputs.classes",
[
"class_a",
"class_b"
]
],
"model_type": [
"google-gemini",
"anthropic-claude",
"florence-2"
],
"task_type": "<block_does_not_provide_example>"
}
v1¶
Class: VLMAsDetectorBlockV1
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.formatters.vlm_as_detector.v1.VLMAsDetectorBlockV1
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
The block expects string input that would be produced by blocks exposing Large Language Models (LLMs) and Visual Language Models (VLMs). Input is parsed to object-detection prediction and returned as block output.
Accepted formats:
-
valid JSON strings
-
JSON documents wrapped with Markdown tags
Example
{"my": "json"}
Details regarding block behavior:
-
error_status
is setTrue
whenever parsing cannot be completed -
in case of multiple markdown blocks with raw JSON content - only first will be parsed
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/vlm_as_detector@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
classes |
List[str] |
List of all classes used by the model, required to generate mapping between class name and class id.. | ✅ |
model_type |
str |
Type of the model that generated prediction. | ❌ |
task_type |
str |
Task type to performed by model.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to VLM as Detector
in version v1
.
- inputs:
Blur Visualization
,Camera Focus
,Image Threshold
,Polygon Zone Visualization
,Stability AI Inpainting
,Relative Static Crop
,Image Preprocessing
,Keypoint Visualization
,Background Color Visualization
,Grid Visualization
,Clip Comparison
,Image Convert Grayscale
,Trace Visualization
,Absolute Static Crop
,Color Visualization
,Perspective Correction
,Classification Label Visualization
,Circle Visualization
,Dimension Collapse
,Camera Calibration
,Pixelate Visualization
,Image Slicer
,OpenAI
,Clip Comparison
,Label Visualization
,Halo Visualization
,Triangle Visualization
,Reference Path Visualization
,Image Slicer
,Llama 3.2 Vision
,Google Gemini
,Line Counter Visualization
,Image Blur
,Size Measurement
,Corner Visualization
,Florence-2 Model
,SIFT Comparison
,Anthropic Claude
,Image Contours
,Dynamic Crop
,Polygon Visualization
,Depth Estimation
,SIFT
,Florence-2 Model
,Ellipse Visualization
,Mask Visualization
,Dynamic Zone
,Buffer
,Stitch Images
,Bounding Box Visualization
,Dot Visualization
,Stability AI Image Generation
,Model Comparison Visualization
,Crop Visualization
- outputs:
Detection Offset
,Line Counter
,Single-Label Classification Model
,Polygon Zone Visualization
,Detections Filter
,Slack Notification
,Time in Zone
,Local File Sink
,YOLO-World Model
,Instance Segmentation Model
,Trace Visualization
,Roboflow Custom Metadata
,Perspective Correction
,OpenAI
,Distance Measurement
,Circle Visualization
,Clip Comparison
,OpenAI
,Triangle Visualization
,Halo Visualization
,Gaze Detection
,Line Counter
,Byte Tracker
,Size Measurement
,Byte Tracker
,Corner Visualization
,Email Notification
,Object Detection Model
,Detections Classes Replacement
,Template Matching
,LMM
,Detections Consensus
,Roboflow Dataset Upload
,Overlap Filter
,Dynamic Crop
,Cache Set
,Velocity
,Model Monitoring Inference Aggregator
,Cache Get
,Segment Anything 2 Model
,Object Detection Model
,Llama 3.2 Vision
,Model Comparison Visualization
,Anthropic Claude
,Keypoint Detection Model
,Crop Visualization
,Blur Visualization
,CLIP Embedding Model
,CogVLM
,Image Threshold
,Stability AI Inpainting
,Image Preprocessing
,Keypoint Visualization
,Background Color Visualization
,Path Deviation
,Pixel Color Count
,Color Visualization
,Twilio SMS Notification
,Multi-Label Classification Model
,Classification Label Visualization
,Google Vision OCR
,Pixelate Visualization
,Stitch OCR Detections
,Label Visualization
,Time in Zone
,Reference Path Visualization
,Webhook Sink
,Single-Label Classification Model
,Google Gemini
,Roboflow Dataset Upload
,Line Counter Visualization
,Byte Tracker
,Multi-Label Classification Model
,Image Blur
,Detections Transformation
,Florence-2 Model
,SIFT Comparison
,Detections Stabilizer
,LMM For Classification
,Instance Segmentation Model
,Polygon Visualization
,Florence-2 Model
,Detections Merge
,Ellipse Visualization
,Mask Visualization
,Keypoint Detection Model
,Detections Stitch
,Bounding Box Visualization
,Dot Visualization
,Stability AI Image Generation
,Path Deviation
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
VLM as Detector
in version v1
has.
Bindings
-
input
image
(image
): The image which was the base to generate VLM prediction.vlm_output
(language_model_output
): The string with raw classification prediction to parse..classes
(list_of_values
): List of all classes used by the model, required to generate mapping between class name and class id..
-
output
error_status
(boolean
): Boolean flag.predictions
(object_detection_prediction
): Prediction with detected bounding boxes in form of sv.Detections(...) object.inference_id
(string
): String value.
Example JSON definition of step VLM as Detector
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/vlm_as_detector@v1",
"image": "$inputs.image",
"vlm_output": [
"$steps.lmm.output"
],
"classes": [
"$steps.lmm.classes",
"$inputs.classes",
[
"class_a",
"class_b"
]
],
"model_type": [
"google-gemini",
"anthropic-claude",
"florence-2"
],
"task_type": "<block_does_not_provide_example>"
}