VLM as Detector¶
v2¶
Class: VLMAsDetectorBlockV2
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.formatters.vlm_as_detector.v2.VLMAsDetectorBlockV2
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
The block expects string input that would be produced by blocks exposing Large Language Models (LLMs) and Visual Language Models (VLMs). Input is parsed to object-detection prediction and returned as block output.
Accepted formats:
-
valid JSON strings
-
JSON documents wrapped with Markdown tags
Example
{"my": "json"}
Details regarding block behavior:
-
error_status
is setTrue
whenever parsing cannot be completed -
in case of multiple markdown blocks with raw JSON content - only first will be parsed
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/vlm_as_detector@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
classes |
List[str] |
List of all classes used by the model, required to generate mapping between class name and class id.. | ✅ |
model_type |
str |
Type of the model that generated prediction. | ❌ |
task_type |
str |
Task type to performed by model.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to VLM as Detector
in version v2
.
- inputs:
Background Color Visualization
,Circle Visualization
,Polygon Visualization
,Polygon Zone Visualization
,Stability AI Outpainting
,Grid Visualization
,Image Slicer
,Reference Path Visualization
,Color Visualization
,Dynamic Crop
,Image Contours
,Size Measurement
,Google Gemini
,Blur Visualization
,Stability AI Inpainting
,SIFT Comparison
,Relative Static Crop
,Bounding Box Visualization
,OpenAI
,Llama 3.2 Vision
,Absolute Static Crop
,Trace Visualization
,Halo Visualization
,Classification Label Visualization
,Crop Visualization
,Camera Calibration
,Stitch Images
,Image Convert Grayscale
,Camera Focus
,Line Counter Visualization
,Florence-2 Model
,Corner Visualization
,Clip Comparison
,OpenAI
,Ellipse Visualization
,Dimension Collapse
,Mask Visualization
,Perspective Correction
,Dynamic Zone
,Triangle Visualization
,Model Comparison Visualization
,Image Blur
,Dot Visualization
,Stability AI Image Generation
,Depth Estimation
,Keypoint Visualization
,Clip Comparison
,Image Threshold
,Image Preprocessing
,Florence-2 Model
,SIFT
,Label Visualization
,Image Slicer
,Pixelate Visualization
,Buffer
,Anthropic Claude
- outputs:
Detections Consensus
,Circle Visualization
,Polygon Zone Visualization
,Reference Path Visualization
,Single-Label Classification Model
,Size Measurement
,Dynamic Crop
,Detections Filter
,Distance Measurement
,Blur Visualization
,Gaze Detection
,Detection Offset
,Stability AI Inpainting
,SIFT Comparison
,Instance Segmentation Model
,Trace Visualization
,Classification Label Visualization
,Crop Visualization
,Segment Anything 2 Model
,Line Counter Visualization
,Email Notification
,Corner Visualization
,Time in Zone
,Path Deviation
,Line Counter
,Multi-Label Classification Model
,Perspective Correction
,Object Detection Model
,Triangle Visualization
,Path Deviation
,Detections Classes Replacement
,Webhook Sink
,Twilio SMS Notification
,Pixelate Visualization
,Keypoint Detection Model
,Background Color Visualization
,Roboflow Custom Metadata
,Polygon Visualization
,Byte Tracker
,Color Visualization
,Model Monitoring Inference Aggregator
,Bounding Box Visualization
,Multi-Label Classification Model
,Halo Visualization
,Florence-2 Model
,Template Matching
,Single-Label Classification Model
,Ellipse Visualization
,Mask Visualization
,Roboflow Dataset Upload
,Dynamic Zone
,Detections Transformation
,Object Detection Model
,Model Comparison Visualization
,Line Counter
,Detections Stitch
,Dot Visualization
,Byte Tracker
,Instance Segmentation Model
,Velocity
,Keypoint Visualization
,Byte Tracker
,Keypoint Detection Model
,Time in Zone
,Roboflow Dataset Upload
,Florence-2 Model
,Stitch OCR Detections
,Detections Merge
,PTZ Tracking (ONVIF)
.md),Label Visualization
,Detections Stabilizer
,Overlap Filter
,Slack Notification
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
VLM as Detector
in version v2
has.
Bindings
-
input
image
(image
): The image which was the base to generate VLM prediction.vlm_output
(language_model_output
): The string with raw classification prediction to parse..classes
(list_of_values
): List of all classes used by the model, required to generate mapping between class name and class id..
-
output
error_status
(boolean
): Boolean flag.predictions
(object_detection_prediction
): Prediction with detected bounding boxes in form of sv.Detections(...) object.inference_id
(inference_id
): Inference identifier.
Example JSON definition of step VLM as Detector
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/vlm_as_detector@v2",
"image": "$inputs.image",
"vlm_output": [
"$steps.lmm.output"
],
"classes": [
"$steps.lmm.classes",
"$inputs.classes",
[
"class_a",
"class_b"
]
],
"model_type": [
"google-gemini",
"anthropic-claude",
"florence-2"
],
"task_type": "<block_does_not_provide_example>"
}
v1¶
Class: VLMAsDetectorBlockV1
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.formatters.vlm_as_detector.v1.VLMAsDetectorBlockV1
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
The block expects string input that would be produced by blocks exposing Large Language Models (LLMs) and Visual Language Models (VLMs). Input is parsed to object-detection prediction and returned as block output.
Accepted formats:
-
valid JSON strings
-
JSON documents wrapped with Markdown tags
Example
{"my": "json"}
Details regarding block behavior:
-
error_status
is setTrue
whenever parsing cannot be completed -
in case of multiple markdown blocks with raw JSON content - only first will be parsed
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/vlm_as_detector@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
classes |
List[str] |
List of all classes used by the model, required to generate mapping between class name and class id.. | ✅ |
model_type |
str |
Type of the model that generated prediction. | ❌ |
task_type |
str |
Task type to performed by model.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to VLM as Detector
in version v1
.
- inputs:
Background Color Visualization
,Circle Visualization
,Polygon Visualization
,Polygon Zone Visualization
,Stability AI Outpainting
,Grid Visualization
,Image Slicer
,Reference Path Visualization
,Color Visualization
,Dynamic Crop
,Image Contours
,Size Measurement
,Google Gemini
,Blur Visualization
,Stability AI Inpainting
,SIFT Comparison
,Relative Static Crop
,Bounding Box Visualization
,OpenAI
,Llama 3.2 Vision
,Absolute Static Crop
,Trace Visualization
,Halo Visualization
,Classification Label Visualization
,Crop Visualization
,Camera Calibration
,Stitch Images
,Image Convert Grayscale
,Camera Focus
,Line Counter Visualization
,Florence-2 Model
,Corner Visualization
,Clip Comparison
,OpenAI
,Ellipse Visualization
,Dimension Collapse
,Mask Visualization
,Perspective Correction
,Dynamic Zone
,Triangle Visualization
,Model Comparison Visualization
,Image Blur
,Dot Visualization
,Stability AI Image Generation
,Depth Estimation
,Keypoint Visualization
,Clip Comparison
,Image Threshold
,Image Preprocessing
,Florence-2 Model
,SIFT
,Label Visualization
,Image Slicer
,Pixelate Visualization
,Buffer
,Anthropic Claude
- outputs:
Detections Consensus
,Circle Visualization
,Polygon Zone Visualization
,Reference Path Visualization
,Single-Label Classification Model
,Size Measurement
,Dynamic Crop
,Detections Filter
,Distance Measurement
,Perception Encoder Embedding Model
,Blur Visualization
,Gaze Detection
,Detection Offset
,Cache Set
,Stability AI Inpainting
,SIFT Comparison
,OpenAI
,LMM For Classification
,Instance Segmentation Model
,Trace Visualization
,Classification Label Visualization
,Crop Visualization
,Segment Anything 2 Model
,Line Counter Visualization
,Email Notification
,Corner Visualization
,Time in Zone
,CLIP Embedding Model
,Google Vision OCR
,Path Deviation
,Line Counter
,Moondream2
,Multi-Label Classification Model
,Perspective Correction
,Object Detection Model
,Triangle Visualization
,Path Deviation
,Image Blur
,Pixel Color Count
,Cache Get
,Clip Comparison
,Detections Classes Replacement
,Webhook Sink
,Twilio SMS Notification
,Image Preprocessing
,Pixelate Visualization
,Anthropic Claude
,Keypoint Detection Model
,Background Color Visualization
,Roboflow Custom Metadata
,Polygon Visualization
,Byte Tracker
,Stability AI Outpainting
,CogVLM
,Color Visualization
,Google Gemini
,Model Monitoring Inference Aggregator
,Bounding Box Visualization
,Llama 3.2 Vision
,Multi-Label Classification Model
,YOLO-World Model
,Halo Visualization
,Florence-2 Model
,Template Matching
,Single-Label Classification Model
,Ellipse Visualization
,OpenAI
,OpenAI
,Mask Visualization
,Roboflow Dataset Upload
,Dynamic Zone
,Detections Transformation
,Object Detection Model
,Model Comparison Visualization
,Line Counter
,Detections Stitch
,Dot Visualization
,Byte Tracker
,Stability AI Image Generation
,Instance Segmentation Model
,Velocity
,Keypoint Visualization
,Byte Tracker
,LMM
,Keypoint Detection Model
,Time in Zone
,Roboflow Dataset Upload
,Florence-2 Model
,Stitch OCR Detections
,Detections Merge
,Local File Sink
,PTZ Tracking (ONVIF)
.md),Label Visualization
,Image Threshold
,Detections Stabilizer
,Overlap Filter
,Slack Notification
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
VLM as Detector
in version v1
has.
Bindings
-
input
image
(image
): The image which was the base to generate VLM prediction.vlm_output
(language_model_output
): The string with raw classification prediction to parse..classes
(list_of_values
): List of all classes used by the model, required to generate mapping between class name and class id..
-
output
error_status
(boolean
): Boolean flag.predictions
(object_detection_prediction
): Prediction with detected bounding boxes in form of sv.Detections(...) object.inference_id
(string
): String value.
Example JSON definition of step VLM as Detector
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/vlm_as_detector@v1",
"image": "$inputs.image",
"vlm_output": [
"$steps.lmm.output"
],
"classes": [
"$steps.lmm.classes",
"$inputs.classes",
[
"class_a",
"class_b"
]
],
"model_type": [
"google-gemini",
"anthropic-claude",
"florence-2"
],
"task_type": "<block_does_not_provide_example>"
}