VLM as Detector¶
v2¶
Class: VLMAsDetectorBlockV2
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.formatters.vlm_as_detector.v2.VLMAsDetectorBlockV2
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
The block expects string input that would be produced by blocks exposing Large Language Models (LLMs) and Visual Language Models (VLMs). Input is parsed to object-detection prediction and returned as block output.
Accepted formats:
-
valid JSON strings
-
JSON documents wrapped with Markdown tags
Example
{"my": "json"}
Details regarding block behavior:
-
error_status
is setTrue
whenever parsing cannot be completed -
in case of multiple markdown blocks with raw JSON content - only first will be parsed
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/vlm_as_detector@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
classes |
List[str] |
List of all classes used by the model, required to generate mapping between class name and class id.. | ✅ |
model_type |
str |
Type of the model that generated prediction. | ❌ |
task_type |
str |
Task type to performed by model.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to VLM as Detector
in version v2
.
- inputs:
Polygon Zone Visualization
,Camera Calibration
,Dot Visualization
,Depth Estimation
,Image Slicer
,QR Code Generator
,Morphological Transformation
,Trace Visualization
,Size Measurement
,Blur Visualization
,Perspective Correction
,Clip Comparison
,Corner Visualization
,Contrast Equalization
,Buffer
,Crop Visualization
,Stability AI Image Generation
,Florence-2 Model
,Grid Visualization
,Image Threshold
,Dimension Collapse
,Florence-2 Model
,Halo Visualization
,SIFT Comparison
,OpenAI
,Model Comparison Visualization
,Pixelate Visualization
,Dynamic Zone
,Anthropic Claude
,Line Counter Visualization
,Stability AI Outpainting
,Relative Static Crop
,Image Contours
,Polygon Visualization
,OpenAI
,Camera Focus
,Triangle Visualization
,SIFT
,Clip Comparison
,Image Slicer
,Image Convert Grayscale
,Classification Label Visualization
,Keypoint Visualization
,Circle Visualization
,Image Blur
,Bounding Box Visualization
,Label Visualization
,Llama 3.2 Vision
,Reference Path Visualization
,Google Gemini
,Absolute Static Crop
,Stability AI Inpainting
,Icon Visualization
,Ellipse Visualization
,Dynamic Crop
,Color Visualization
,Mask Visualization
,Image Preprocessing
,Stitch Images
,Background Color Visualization
- outputs:
Byte Tracker
,Polygon Zone Visualization
,Time in Zone
,Distance Measurement
,Dot Visualization
,Size Measurement
,Perspective Correction
,Blur Visualization
,Corner Visualization
,PTZ Tracking (ONVIF)
.md),Florence-2 Model
,Florence-2 Model
,Halo Visualization
,Keypoint Detection Model
,Multi-Label Classification Model
,Detections Combine
,Detection Offset
,Byte Tracker
,Line Counter Visualization
,Stitch OCR Detections
,Twilio SMS Notification
,Keypoint Detection Model
,Roboflow Dataset Upload
,Email Notification
,Instance Segmentation Model
,Keypoint Visualization
,Template Matching
,Detections Stabilizer
,Bounding Box Visualization
,Instance Segmentation Model
,Line Counter
,Reference Path Visualization
,Dynamic Crop
,Roboflow Dataset Upload
,Mask Visualization
,Background Color Visualization
,Webhook Sink
,Detections Stitch
,Trace Visualization
,Time in Zone
,Velocity
,Object Detection Model
,Detections Transformation
,Byte Tracker
,Overlap Filter
,Crop Visualization
,SIFT Comparison
,Roboflow Custom Metadata
,Object Detection Model
,Model Comparison Visualization
,Pixelate Visualization
,Dynamic Zone
,Model Monitoring Inference Aggregator
,Gaze Detection
,Line Counter
,Time in Zone
,Polygon Visualization
,Slack Notification
,Path Deviation
,Triangle Visualization
,Detections Filter
,Single-Label Classification Model
,Classification Label Visualization
,Detections Classes Replacement
,Circle Visualization
,Label Visualization
,Stability AI Inpainting
,Multi-Label Classification Model
,Icon Visualization
,Ellipse Visualization
,Color Visualization
,Detections Merge
,Path Deviation
,Single-Label Classification Model
,Detections Consensus
,Segment Anything 2 Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
VLM as Detector
in version v2
has.
Bindings
-
input
image
(image
): The image which was the base to generate VLM prediction.vlm_output
(language_model_output
): The string with raw classification prediction to parse..classes
(list_of_values
): List of all classes used by the model, required to generate mapping between class name and class id..
-
output
error_status
(boolean
): Boolean flag.predictions
(object_detection_prediction
): Prediction with detected bounding boxes in form of sv.Detections(...) object.inference_id
(inference_id
): Inference identifier.
Example JSON definition of step VLM as Detector
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/vlm_as_detector@v2",
"image": "$inputs.image",
"vlm_output": [
"$steps.lmm.output"
],
"classes": [
"$steps.lmm.classes",
"$inputs.classes",
[
"class_a",
"class_b"
]
],
"model_type": [
"google-gemini",
"anthropic-claude",
"florence-2"
],
"task_type": "<block_does_not_provide_example>"
}
v1¶
Class: VLMAsDetectorBlockV1
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.formatters.vlm_as_detector.v1.VLMAsDetectorBlockV1
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
The block expects string input that would be produced by blocks exposing Large Language Models (LLMs) and Visual Language Models (VLMs). Input is parsed to object-detection prediction and returned as block output.
Accepted formats:
-
valid JSON strings
-
JSON documents wrapped with Markdown tags
Example
{"my": "json"}
Details regarding block behavior:
-
error_status
is setTrue
whenever parsing cannot be completed -
in case of multiple markdown blocks with raw JSON content - only first will be parsed
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/vlm_as_detector@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
classes |
List[str] |
List of all classes used by the model, required to generate mapping between class name and class id.. | ✅ |
model_type |
str |
Type of the model that generated prediction. | ❌ |
task_type |
str |
Task type to performed by model.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to VLM as Detector
in version v1
.
- inputs:
Polygon Zone Visualization
,Camera Calibration
,Dot Visualization
,Depth Estimation
,Image Slicer
,QR Code Generator
,Morphological Transformation
,Trace Visualization
,Size Measurement
,Blur Visualization
,Perspective Correction
,Clip Comparison
,Corner Visualization
,Contrast Equalization
,Buffer
,Crop Visualization
,Stability AI Image Generation
,Florence-2 Model
,Grid Visualization
,Image Threshold
,Dimension Collapse
,Florence-2 Model
,Halo Visualization
,SIFT Comparison
,OpenAI
,Model Comparison Visualization
,Pixelate Visualization
,Dynamic Zone
,Anthropic Claude
,Line Counter Visualization
,Stability AI Outpainting
,Relative Static Crop
,Image Contours
,Polygon Visualization
,OpenAI
,Camera Focus
,Triangle Visualization
,SIFT
,Clip Comparison
,Image Slicer
,Image Convert Grayscale
,Classification Label Visualization
,Keypoint Visualization
,Circle Visualization
,Image Blur
,Bounding Box Visualization
,Label Visualization
,Llama 3.2 Vision
,Reference Path Visualization
,Google Gemini
,Absolute Static Crop
,Stability AI Inpainting
,Icon Visualization
,Ellipse Visualization
,Dynamic Crop
,Color Visualization
,Mask Visualization
,Image Preprocessing
,Stitch Images
,Background Color Visualization
- outputs:
Byte Tracker
,Distance Measurement
,Time in Zone
,Dot Visualization
,Perspective Correction
,Blur Visualization
,OpenAI
,Keypoint Detection Model
,Stability AI Outpainting
,Twilio SMS Notification
,Google Vision OCR
,Roboflow Dataset Upload
,Email Notification
,Instance Segmentation Model
,Detections Stabilizer
,Bounding Box Visualization
,Llama 3.2 Vision
,Reference Path Visualization
,Image Preprocessing
,Local File Sink
,OpenAI
,Detections Stitch
,Velocity
,Object Detection Model
,Stability AI Image Generation
,SIFT Comparison
,Roboflow Custom Metadata
,Cache Get
,Model Comparison Visualization
,Dynamic Zone
,Line Counter
,Time in Zone
,Polygon Visualization
,Slack Notification
,Triangle Visualization
,Single-Label Classification Model
,YOLO-World Model
,Detections Classes Replacement
,Circle Visualization
,Label Visualization
,Google Gemini
,Multi-Label Classification Model
,Detections Merge
,Path Deviation
,Detections Consensus
,Moondream2
,Segment Anything 2 Model
,Polygon Zone Visualization
,LMM For Classification
,Morphological Transformation
,Size Measurement
,Corner Visualization
,LMM
,Pixel Color Count
,PTZ Tracking (ONVIF)
.md),Florence-2 Model
,Image Threshold
,Florence-2 Model
,Halo Visualization
,Multi-Label Classification Model
,Detections Combine
,Detection Offset
,CogVLM
,Byte Tracker
,Line Counter Visualization
,Perception Encoder Embedding Model
,Stitch OCR Detections
,Keypoint Detection Model
,CLIP Embedding Model
,Clip Comparison
,Keypoint Visualization
,Template Matching
,Line Counter
,Instance Segmentation Model
,Dynamic Crop
,Roboflow Dataset Upload
,Mask Visualization
,Background Color Visualization
,Webhook Sink
,QR Code Generator
,Trace Visualization
,Time in Zone
,Detections Transformation
,Contrast Equalization
,Byte Tracker
,Overlap Filter
,Crop Visualization
,Cache Set
,Object Detection Model
,Pixelate Visualization
,Model Monitoring Inference Aggregator
,Gaze Detection
,Anthropic Claude
,Path Deviation
,OpenAI
,Detections Filter
,Classification Label Visualization
,Image Blur
,Stability AI Inpainting
,Icon Visualization
,Ellipse Visualization
,Color Visualization
,Single-Label Classification Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
VLM as Detector
in version v1
has.
Bindings
-
input
image
(image
): The image which was the base to generate VLM prediction.vlm_output
(language_model_output
): The string with raw classification prediction to parse..classes
(list_of_values
): List of all classes used by the model, required to generate mapping between class name and class id..
-
output
error_status
(boolean
): Boolean flag.predictions
(object_detection_prediction
): Prediction with detected bounding boxes in form of sv.Detections(...) object.inference_id
(string
): String value.
Example JSON definition of step VLM as Detector
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/vlm_as_detector@v1",
"image": "$inputs.image",
"vlm_output": [
"$steps.lmm.output"
],
"classes": [
"$steps.lmm.classes",
"$inputs.classes",
[
"class_a",
"class_b"
]
],
"model_type": [
"google-gemini",
"anthropic-claude",
"florence-2"
],
"task_type": "<block_does_not_provide_example>"
}