YOLO-World Model¶
Class: YoloWorldModelBlockV1
Source: inference.core.workflows.core_steps.models.foundation.yolo_world.v1.YoloWorldModelBlockV1
Run YOLO-World, a zero-shot object detection model, on an image.
YOLO-World accepts one or more text classes you want to identify in an image. The model returns the location of objects that meet the specified class, if YOLO-World is able to identify objects of that class.
We recommend experimenting with YOLO-World to evaluate the model on your use case before using this block in production. For example on how to effectively prompt YOLO-World, refer to the Roboflow YOLO-World prompting guide.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/yolo_world_model@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
class_names |
List[str] |
One or more classes that you want YOLO-World to detect. The model accepts any string as an input, though does best with short descriptions of common objects.. | ✅ |
version |
str |
Variant of YoloWorld model. | ✅ |
confidence |
float |
Confidence threshold for detections. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to YOLO-World Model
in version v1
.
- inputs:
Keypoint Detection Model
,CogVLM
,Image Convert Grayscale
,Anthropic Claude
,OpenAI
,Google Vision OCR
,Florence-2 Model
,Pixelate Visualization
,Dimension Collapse
,Single-Label Classification Model
,SIFT
,OpenAI
,Stability AI Image Generation
,Mask Visualization
,Object Detection Model
,Image Slicer
,Triangle Visualization
,VLM as Detector
,CSV Formatter
,Polygon Zone Visualization
,Model Comparison Visualization
,Crop Visualization
,Classification Label Visualization
,LMM
,Reference Path Visualization
,Multi-Label Classification Model
,Twilio SMS Notification
,Google Gemini
,Bounding Box Visualization
,Image Contours
,Roboflow Custom Metadata
,Size Measurement
,Circle Visualization
,Perspective Correction
,Slack Notification
,Polygon Visualization
,VLM as Classifier
,Trace Visualization
,Webhook Sink
,Color Visualization
,Identify Changes
,LMM For Classification
,Detections Consensus
,Image Threshold
,SIFT Comparison
,Absolute Static Crop
,Clip Comparison
,Line Counter Visualization
,Stitch Images
,Dot Visualization
,Identify Outliers
,Dynamic Zone
,Instance Segmentation Model
,Background Color Visualization
,Florence-2 Model
,Model Monitoring Inference Aggregator
,Stitch OCR Detections
,Image Slicer
,Roboflow Dataset Upload
,Roboflow Dataset Upload
,Image Blur
,Email Notification
,Camera Focus
,Grid Visualization
,Blur Visualization
,Label Visualization
,Stability AI Inpainting
,Depth Estimation
,Image Preprocessing
,Llama 3.2 Vision
,Ellipse Visualization
,Halo Visualization
,Corner Visualization
,Camera Calibration
,Clip Comparison
,Buffer
,Dynamic Crop
,Relative Static Crop
,OpenAI
,Keypoint Visualization
,OCR Model
,Local File Sink
- outputs:
Detections Stitch
,Detections Classes Replacement
,Florence-2 Model
,Detection Offset
,Distance Measurement
,Pixelate Visualization
,Line Counter
,Detections Filter
,Dot Visualization
,Overlap Filter
,Background Color Visualization
,Florence-2 Model
,Model Monitoring Inference Aggregator
,Detections Stabilizer
,Triangle Visualization
,Stitch OCR Detections
,Path Deviation
,Roboflow Dataset Upload
,Roboflow Dataset Upload
,Time in Zone
,Path Deviation
,Model Comparison Visualization
,Crop Visualization
,Blur Visualization
,Label Visualization
,Segment Anything 2 Model
,Byte Tracker
,Ellipse Visualization
,ONVIF Control
,Byte Tracker
,Line Counter
,Bounding Box Visualization
,Roboflow Custom Metadata
,Byte Tracker
,Size Measurement
,Corner Visualization
,Time in Zone
,Circle Visualization
,Perspective Correction
,Dynamic Crop
,Detections Transformation
,Detections Merge
,Trace Visualization
,Velocity
,Color Visualization
,Detections Consensus
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
YOLO-World Model
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..class_names
(list_of_values
): One or more classes that you want YOLO-World to detect. The model accepts any string as an input, though does best with short descriptions of common objects..version
(string
): Variant of YoloWorld model.confidence
(float_zero_to_one
): Confidence threshold for detections.
-
output
predictions
(object_detection_prediction
): Prediction with detected bounding boxes in form of sv.Detections(...) object.
Example JSON definition of step YOLO-World Model
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/yolo_world_model@v1",
"images": "$inputs.image",
"class_names": [
"person",
"car",
"license plate"
],
"version": "v2-s",
"confidence": 0.005
}