YOLO-World Model¶
Class: YoloWorldModelBlockV1
Source: inference.core.workflows.core_steps.models.foundation.yolo_world.v1.YoloWorldModelBlockV1
Run YOLO-World, a zero-shot object detection model, on an image.
YOLO-World accepts one or more text classes you want to identify in an image. The model returns the location of objects that meet the specified class, if YOLO-World is able to identify objects of that class.
We recommend experimenting with YOLO-World to evaluate the model on your use case before using this block in production. For example on how to effectively prompt YOLO-World, refer to the Roboflow YOLO-World prompting guide.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/yolo_world_model@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
class_names |
List[str] |
One or more classes that you want YOLO-World to detect. The model accepts any string as an input, though does best with short descriptions of common objects.. | ✅ |
version |
str |
Variant of YoloWorld model. | ✅ |
confidence |
float |
Confidence threshold for detections. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to YOLO-World Model
in version v1
.
- inputs:
Circle Visualization
,Background Color Visualization
,Corner Visualization
,Twilio SMS Notification
,Slack Notification
,VLM as Detector
,LMM
,Polygon Zone Visualization
,Camera Focus
,Image Slicer
,Image Blur
,Dot Visualization
,Google Gemini
,Roboflow Dataset Upload
,Stability AI Inpainting
,Pixelate Visualization
,OpenAI
,Detections Consensus
,Image Convert Grayscale
,Absolute Static Crop
,Stability AI Image Generation
,Webhook Sink
,Color Visualization
,Image Threshold
,Halo Visualization
,Polygon Visualization
,VLM as Classifier
,Dynamic Zone
,CogVLM
,Camera Calibration
,Email Notification
,Classification Label Visualization
,Single-Label Classification Model
,Llama 3.2 Vision
,Google Vision OCR
,Roboflow Dataset Upload
,Ellipse Visualization
,Size Measurement
,Bounding Box Visualization
,Object Detection Model
,Line Counter Visualization
,Image Preprocessing
,Trace Visualization
,Label Visualization
,Clip Comparison
,Local File Sink
,Image Slicer
,Anthropic Claude
,Crop Visualization
,Identify Outliers
,OCR Model
,Relative Static Crop
,Model Comparison Visualization
,Stitch OCR Detections
,Perspective Correction
,OpenAI
,Mask Visualization
,Clip Comparison
,Dynamic Crop
,CSV Formatter
,Florence-2 Model
,Instance Segmentation Model
,Keypoint Detection Model
,Image Contours
,Buffer
,SIFT
,Reference Path Visualization
,Florence-2 Model
,Triangle Visualization
,Model Monitoring Inference Aggregator
,SIFT Comparison
,Keypoint Visualization
,Identify Changes
,Multi-Label Classification Model
,LMM For Classification
,Roboflow Custom Metadata
,Grid Visualization
,Stitch Images
,Dimension Collapse
,Blur Visualization
- outputs:
Circle Visualization
,Background Color Visualization
,Corner Visualization
,Bounding Box Visualization
,Trace Visualization
,Label Visualization
,Detections Transformation
,Crop Visualization
,Detections Stitch
,Path Deviation
,Detections Merge
,Dot Visualization
,Detection Offset
,Model Comparison Visualization
,Roboflow Dataset Upload
,Stitch OCR Detections
,Line Counter
,Perspective Correction
,Pixelate Visualization
,Detections Stabilizer
,Path Deviation
,Detections Consensus
,Byte Tracker
,Distance Measurement
,Time in Zone
,Detections Filter
,Color Visualization
,Time in Zone
,Dynamic Crop
,Byte Tracker
,Detections Classes Replacement
,Florence-2 Model
,Florence-2 Model
,Triangle Visualization
,Model Monitoring Inference Aggregator
,Velocity
,Roboflow Dataset Upload
,Roboflow Custom Metadata
,Byte Tracker
,Line Counter
,Segment Anything 2 Model
,Ellipse Visualization
,Size Measurement
,Blur Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
YOLO-World Model
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..class_names
(list_of_values
): One or more classes that you want YOLO-World to detect. The model accepts any string as an input, though does best with short descriptions of common objects..version
(string
): Variant of YoloWorld model.confidence
(float_zero_to_one
): Confidence threshold for detections.
-
output
predictions
(object_detection_prediction
): Prediction with detected bounding boxes in form of sv.Detections(...) object.
Example JSON definition of step YOLO-World Model
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/yolo_world_model@v1",
"images": "$inputs.image",
"class_names": [
"person",
"car",
"license plate"
],
"version": "v2-s",
"confidence": 0.005
}