YOLO-World Model¶
Class: YoloWorldModelBlockV1
Source: inference.core.workflows.core_steps.models.foundation.yolo_world.v1.YoloWorldModelBlockV1
Run YOLO-World, a zero-shot object detection model, on an image.
YOLO-World accepts one or more text classes you want to identify in an image. The model returns the location of objects that meet the specified class, if YOLO-World is able to identify objects of that class.
We recommend experimenting with YOLO-World to evaluate the model on your use case before using this block in production. For example on how to effectively prompt YOLO-World, refer to the Roboflow YOLO-World prompting guide.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/yolo_world_model@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
class_names |
List[str] |
One or more classes that you want YOLO-World to detect. The model accepts any string as an input, though does best with short descriptions of common objects.. | ✅ |
version |
str |
Variant of YoloWorld model. | ✅ |
confidence |
float |
Confidence threshold for detections. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to YOLO-World Model
in version v1
.
- inputs:
Keypoint Detection Model
,Halo Visualization
,OpenAI
,Stability AI Image Generation
,Model Comparison Visualization
,Keypoint Visualization
,Crop Visualization
,Image Blur
,Bounding Box Visualization
,Roboflow Dataset Upload
,Size Measurement
,Mask Visualization
,Image Slicer
,Instance Segmentation Model
,Ellipse Visualization
,Email Notification
,OpenAI
,Dynamic Zone
,Slack Notification
,VLM as Detector
,Twilio SMS Notification
,Webhook Sink
,Label Visualization
,Google Vision OCR
,Stability AI Outpainting
,CSV Formatter
,Single-Label Classification Model
,Polygon Visualization
,Buffer
,Identify Changes
,Model Monitoring Inference Aggregator
,Roboflow Custom Metadata
,Reference Path Visualization
,Florence-2 Model
,OCR Model
,Anthropic Claude
,Camera Calibration
,Image Preprocessing
,Image Contours
,Line Counter Visualization
,Dimension Collapse
,Florence-2 Model
,LMM For Classification
,Corner Visualization
,Clip Comparison
,Stitch Images
,Depth Estimation
,SIFT
,Blur Visualization
,Image Convert Grayscale
,Background Color Visualization
,Image Slicer
,Dynamic Crop
,Local File Sink
,Perspective Correction
,Stitch OCR Detections
,Circle Visualization
,Triangle Visualization
,Dot Visualization
,CogVLM
,Object Detection Model
,VLM as Classifier
,LMM
,Color Visualization
,Stability AI Inpainting
,Classification Label Visualization
,OpenAI
,Absolute Static Crop
,Image Threshold
,Detections Consensus
,Llama 3.2 Vision
,Pixelate Visualization
,Trace Visualization
,Camera Focus
,Roboflow Dataset Upload
,Grid Visualization
,Clip Comparison
,Google Gemini
,SIFT Comparison
,Multi-Label Classification Model
,Relative Static Crop
,Polygon Zone Visualization
,Identify Outliers
- outputs:
Line Counter
,Florence-2 Model
,Corner Visualization
,Detections Merge
,Model Comparison Visualization
,Crop Visualization
,Time in Zone
,Background Color Visualization
,Blur Visualization
,Bounding Box Visualization
,Dynamic Crop
,Line Counter
,Distance Measurement
,Perspective Correction
,Stitch OCR Detections
,Circle Visualization
,Triangle Visualization
,Byte Tracker
,Dot Visualization
,Detections Filter
,Size Measurement
,Roboflow Dataset Upload
,Path Deviation
,Detections Classes Replacement
,Segment Anything 2 Model
,Ellipse Visualization
,Color Visualization
,Byte Tracker
,Detection Offset
,Byte Tracker
,Detections Consensus
,Time in Zone
,Pixelate Visualization
,Trace Visualization
,Detections Stabilizer
,Label Visualization
,Roboflow Dataset Upload
,Overlap Filter
,Velocity
,PTZ Tracking (ONVIF)
.md),Model Monitoring Inference Aggregator
,Detections Stitch
,Roboflow Custom Metadata
,Path Deviation
,Florence-2 Model
,Detections Transformation
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
YOLO-World Model
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..class_names
(list_of_values
): One or more classes that you want YOLO-World to detect. The model accepts any string as an input, though does best with short descriptions of common objects..version
(string
): Variant of YoloWorld model.confidence
(float_zero_to_one
): Confidence threshold for detections.
-
output
predictions
(object_detection_prediction
): Prediction with detected bounding boxes in form of sv.Detections(...) object.
Example JSON definition of step YOLO-World Model
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/yolo_world_model@v1",
"images": "$inputs.image",
"class_names": [
"person",
"car",
"license plate"
],
"version": "v2-s",
"confidence": 0.005
}