YOLO-World Model¶
Class: YoloWorldModelBlockV1
Source: inference.core.workflows.core_steps.models.foundation.yolo_world.v1.YoloWorldModelBlockV1
Run YOLO-World, a zero-shot object detection model, on an image.
YOLO-World accepts one or more text classes you want to identify in an image. The model returns the location of objects that meet the specified class, if YOLO-World is able to identify objects of that class.
We recommend experimenting with YOLO-World to evaluate the model on your use case before using this block in production. For example on how to effectively prompt YOLO-World, refer to the Roboflow YOLO-World prompting guide.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/yolo_world_model@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
class_names |
List[str] |
One or more classes that you want YOLO-World to detect. The model accepts any string as an input, though does best with short descriptions of common objects.. | ✅ |
version |
str |
Variant of YoloWorld model. | ✅ |
confidence |
float |
Confidence threshold for detections. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to YOLO-World Model
in version v1
.
- inputs:
Stitch Images
,Pixelate Visualization
,Multi-Label Classification Model
,LMM For Classification
,Blur Visualization
,Single-Label Classification Model
,Mask Visualization
,OCR Model
,Object Detection Model
,SIFT
,Model Monitoring Inference Aggregator
,Polygon Visualization
,Halo Visualization
,Grid Visualization
,Google Vision OCR
,Model Comparison Visualization
,Email Notification
,Camera Focus
,CogVLM
,Image Threshold
,Keypoint Visualization
,Image Preprocessing
,Roboflow Dataset Upload
,Slack Notification
,Stitch OCR Detections
,Identify Changes
,Relative Static Crop
,Background Color Visualization
,Clip Comparison
,Bounding Box Visualization
,Ellipse Visualization
,Image Contours
,Label Visualization
,Classification Label Visualization
,Line Counter Visualization
,LMM
,Stability AI Inpainting
,Reference Path Visualization
,VLM as Detector
,Dynamic Crop
,Triangle Visualization
,Absolute Static Crop
,Florence-2 Model
,SIFT Comparison
,Keypoint Detection Model
,Corner Visualization
,Perspective Correction
,Local File Sink
,Polygon Zone Visualization
,VLM as Classifier
,Dimension Collapse
,Image Slicer
,Trace Visualization
,Size Measurement
,OpenAI
,Webhook Sink
,Twilio SMS Notification
,Roboflow Custom Metadata
,Detections Consensus
,Crop Visualization
,Instance Segmentation Model
,Buffer
,Roboflow Dataset Upload
,Clip Comparison
,Anthropic Claude
,Dynamic Zone
,Image Blur
,Circle Visualization
,Image Convert Grayscale
,Dot Visualization
,Google Gemini
,Identify Outliers
,Florence-2 Model
,OpenAI
,Color Visualization
,CSV Formatter
,Llama 3.2 Vision
- outputs:
Time in Zone
,Florence-2 Model
,Path Deviation
,Pixelate Visualization
,Detections Stitch
,Line Counter
,Corner Visualization
,Blur Visualization
,Perspective Correction
,Line Counter
,Detections Filter
,Model Monitoring Inference Aggregator
,Trace Visualization
,Model Comparison Visualization
,Size Measurement
,Detections Consensus
,Roboflow Custom Metadata
,Byte Tracker
,Detections Classes Replacement
,Crop Visualization
,Detection Offset
,Roboflow Dataset Upload
,Roboflow Dataset Upload
,Stitch OCR Detections
,Dot Visualization
,Circle Visualization
,Background Color Visualization
,Segment Anything 2 Model
,Bounding Box Visualization
,Ellipse Visualization
,Label Visualization
,Byte Tracker
,Time in Zone
,Florence-2 Model
,Detections Stabilizer
,Path Deviation
,Dynamic Crop
,Byte Tracker
,Triangle Visualization
,Color Visualization
,Detections Transformation
,Distance Measurement
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
YOLO-World Model
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on.class_names
(list_of_values
): One or more classes that you want YOLO-World to detect. The model accepts any string as an input, though does best with short descriptions of common objects..version
(string
): Variant of YoloWorld model.confidence
(float_zero_to_one
): Confidence threshold for detections.
-
output
predictions
(object_detection_prediction
): Prediction with detected bounding boxes in form of sv.Detections(...) object.
Example JSON definition of step YOLO-World Model
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/yolo_world_model@v1",
"images": "$inputs.image",
"class_names": [
"person",
"car",
"license plate"
],
"version": "v2-s",
"confidence": 0.005
}