YOLO-World Model¶
Class: YoloWorldModelBlockV1
Source: inference.core.workflows.core_steps.models.foundation.yolo_world.v1.YoloWorldModelBlockV1
Run YOLO-World, a zero-shot object detection model, on an image.
YOLO-World accepts one or more text classes you want to identify in an image. The model returns the location of objects that meet the specified class, if YOLO-World is able to identify objects of that class.
We recommend experimenting with YOLO-World to evaluate the model on your use case before using this block in production. For example on how to effectively prompt YOLO-World, refer to the Roboflow YOLO-World prompting guide.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/yolo_world_model@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
class_names |
List[str] |
One or more classes that you want YOLO-World to detect. The model accepts any string as an input, though does best with short descriptions of common objects.. | ✅ |
version |
str |
Variant of YoloWorld model. | ✅ |
confidence |
float |
Confidence threshold for detections. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to YOLO-World Model
in version v1
.
- inputs:
Image Slicer
,Stability AI Inpainting
,Clip Comparison
,Perspective Correction
,Object Detection Model
,Roboflow Custom Metadata
,SIFT Comparison
,Grid Visualization
,Ellipse Visualization
,SIFT
,CogVLM
,VLM as Detector
,Image Contours
,OpenAI
,Absolute Static Crop
,Camera Focus
,Polygon Visualization
,Trace Visualization
,Multi-Label Classification Model
,Dot Visualization
,Clip Comparison
,Google Vision OCR
,Identify Changes
,Polygon Zone Visualization
,Roboflow Dataset Upload
,Identify Outliers
,Classification Label Visualization
,Corner Visualization
,Llama 3.2 Vision
,Dynamic Crop
,Reference Path Visualization
,Label Visualization
,Mask Visualization
,Triangle Visualization
,Line Counter Visualization
,Dynamic Zone
,Model Monitoring Inference Aggregator
,Blur Visualization
,Anthropic Claude
,Webhook Sink
,Instance Segmentation Model
,Slack Notification
,Stitch OCR Detections
,Pixelate Visualization
,Relative Static Crop
,Detections Consensus
,Twilio SMS Notification
,Dimension Collapse
,VLM as Classifier
,Roboflow Dataset Upload
,Google Gemini
,Model Comparison Visualization
,Halo Visualization
,Crop Visualization
,Image Blur
,Circle Visualization
,Buffer
,Keypoint Detection Model
,Image Preprocessing
,Background Color Visualization
,Size Measurement
,Florence-2 Model
,Bounding Box Visualization
,Florence-2 Model
,Local File Sink
,Image Slicer
,LMM For Classification
,Stitch Images
,Stability AI Image Generation
,Image Threshold
,OCR Model
,LMM
,Keypoint Visualization
,Email Notification
,Color Visualization
,Single-Label Classification Model
,CSV Formatter
,Image Convert Grayscale
,OpenAI
- outputs:
Segment Anything 2 Model
,Detections Filter
,Stitch OCR Detections
,Pixelate Visualization
,Perspective Correction
,Path Deviation
,Roboflow Custom Metadata
,Detections Consensus
,Detection Offset
,Roboflow Dataset Upload
,Ellipse Visualization
,Model Comparison Visualization
,Crop Visualization
,Byte Tracker
,Trace Visualization
,Distance Measurement
,Circle Visualization
,Velocity
,Background Color Visualization
,Dot Visualization
,Roboflow Dataset Upload
,Size Measurement
,Florence-2 Model
,Byte Tracker
,Corner Visualization
,Florence-2 Model
,Byte Tracker
,Bounding Box Visualization
,Dynamic Crop
,Line Counter
,Detections Stabilizer
,Label Visualization
,Triangle Visualization
,Detections Stitch
,Detections Transformation
,Model Monitoring Inference Aggregator
,Color Visualization
,Path Deviation
,Time in Zone
,Blur Visualization
,Line Counter
,Time in Zone
,Detections Classes Replacement
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
YOLO-World Model
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..class_names
(list_of_values
): One or more classes that you want YOLO-World to detect. The model accepts any string as an input, though does best with short descriptions of common objects..version
(string
): Variant of YoloWorld model.confidence
(float_zero_to_one
): Confidence threshold for detections.
-
output
predictions
(object_detection_prediction
): Prediction with detected bounding boxes in form of sv.Detections(...) object.
Example JSON definition of step YOLO-World Model
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/yolo_world_model@v1",
"images": "$inputs.image",
"class_names": [
"person",
"car",
"license plate"
],
"version": "v2-s",
"confidence": 0.005
}