Advanced inference techniques¶
Below you can find example workflows you can use as inspiration to build your apps.
SAHI in workflows - object detection¶
This example illustrates usage of SAHI technique in workflows.
Workflows implementation requires three blocks:
-
Image Slicer - which runs a sliding window over image and for each image prepares batch of crops
-
detection model block (in our scenario Roboflow Object Detection model) - which is responsible for making predictions on each crop
-
Detections stitch - which combines partial predictions for each slice of the image into a single prediction
Workflow definition
{
"version": "1.0.0",
"inputs": [
{
"type": "WorkflowImage",
"name": "image"
},
{
"type": "WorkflowParameter",
"name": "overlap_filtering_strategy"
}
],
"steps": [
{
"type": "roboflow_core/image_slicer@v1",
"name": "image_slicer",
"image": "$inputs.image"
},
{
"type": "roboflow_core/roboflow_object_detection_model@v2",
"name": "detection",
"image": "$steps.image_slicer.slices",
"model_id": "yolov8n-640"
},
{
"type": "roboflow_core/detections_stitch@v1",
"name": "stitch",
"reference_image": "$inputs.image",
"predictions": "$steps.detection.predictions",
"overlap_filtering_strategy": "$inputs.overlap_filtering_strategy"
},
{
"type": "roboflow_core/bounding_box_visualization@v1",
"name": "bbox_visualiser",
"predictions": "$steps.stitch.predictions",
"image": "$inputs.image"
}
],
"outputs": [
{
"type": "JsonField",
"name": "predictions",
"selector": "$steps.stitch.predictions",
"coordinates_system": "own"
},
{
"type": "JsonField",
"name": "visualisation",
"selector": "$steps.bbox_visualiser.image"
}
]
}
SAHI in workflows - instance segmentation¶
This example illustrates usage of SAHI technique in workflows.
Workflows implementation requires three blocks:
-
Image Slicer - which runs a sliding window over image and for each image prepares batch of crops
-
detection model block (in our scenario Roboflow Instance Segmentation model) - which is responsible for making predictions on each crop
-
Detections stitch - which combines partial predictions for each slice of the image into a single prediction
Workflow definition
{
"version": "1.0.0",
"inputs": [
{
"type": "WorkflowImage",
"name": "image"
},
{
"type": "WorkflowParameter",
"name": "overlap_filtering_strategy"
}
],
"steps": [
{
"type": "roboflow_core/image_slicer@v1",
"name": "image_slicer",
"image": "$inputs.image"
},
{
"type": "roboflow_core/roboflow_object_detection_model@v2",
"name": "detection",
"image": "$steps.image_slicer.slices",
"model_id": "yolov8n-640"
},
{
"type": "roboflow_core/detections_stitch@v1",
"name": "stitch",
"reference_image": "$inputs.image",
"predictions": "$steps.detection.predictions",
"overlap_filtering_strategy": "$inputs.overlap_filtering_strategy"
},
{
"type": "roboflow_core/bounding_box_visualization@v1",
"name": "bbox_visualiser",
"predictions": "$steps.stitch.predictions",
"image": "$inputs.image"
}
],
"outputs": [
{
"type": "JsonField",
"name": "predictions",
"selector": "$steps.stitch.predictions",
"coordinates_system": "own"
},
{
"type": "JsonField",
"name": "visualisation",
"selector": "$steps.bbox_visualiser.image"
}
]
}