Skip to content

Utils

RateLimiter

Implements rate upper-bound rate limiting by ensuring estimate_next_tick_delay() to be at min 1 / desired_fps, not letting the client obeying outcomes to exceed assumed rate.

Source code in inference/core/interfaces/camera/utils.py
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
class RateLimiter:
    """
    Implements rate upper-bound rate limiting by ensuring estimate_next_tick_delay()
    to be at min 1 / desired_fps, not letting the client obeying outcomes to exceed
    assumed rate.
    """

    def __init__(self, desired_fps: Union[float, int]):
        self._desired_fps = max(desired_fps, MINIMAL_FPS)
        self._last_tick: Optional[float] = None

    def tick(self) -> None:
        self._last_tick = time.monotonic()

    def estimate_next_action_delay(self) -> float:
        if self._last_tick is None:
            return 0.0
        desired_delay = 1 / self._desired_fps
        time_since_last_tick = time.monotonic() - self._last_tick
        return max(desired_delay - time_since_last_tick, 0.0)

VideoSourcesManager

This class should be treated as internal building block of stream multiplexer - not for external use.

Source code in inference/core/interfaces/camera/utils.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
class VideoSourcesManager:
    """
    This class should be treated as internal building block of stream multiplexer - not for external use.
    """

    @classmethod
    def init(
        cls,
        video_sources: VideoSources,
        should_stop: Callable[[], bool],
        on_reconnection_error: Callable[[Optional[int], SourceConnectionError], None],
    ) -> "VideoSourcesManager":
        return cls(
            video_sources=video_sources,
            should_stop=should_stop,
            on_reconnection_error=on_reconnection_error,
        )

    def __init__(
        self,
        video_sources: VideoSources,
        should_stop: Callable[[], bool],
        on_reconnection_error: Callable[[Optional[int], SourceConnectionError], None],
    ):
        self._video_sources = video_sources
        self._reconnection_threads: Dict[int, Thread] = {}
        self._external_should_stop = should_stop
        self._on_reconnection_error = on_reconnection_error
        self._enforce_stop: Dict[int, bool] = {}
        self._ended_sources: Set[int] = set()
        self._threads_to_join: Set[int] = set()
        self._last_batch_yielded_time = datetime.now()

    def retrieve_frames_from_sources(
        self,
        batch_collection_timeout: Optional[float],
    ) -> Optional[List[VideoFrame]]:
        batch_frames = []
        if batch_collection_timeout is not None:
            batch_timeout_moment = self._last_batch_yielded_time + timedelta(
                seconds=batch_collection_timeout
            )
        else:
            batch_timeout_moment = None
        for source_ord, (source, source_should_reconnect) in enumerate(
            zip(self._video_sources.all_sources, self._video_sources.allow_reconnection)
        ):
            if self._external_should_stop():
                self.join_all_reconnection_threads(include_not_finished=True)
                return None
            if self._is_source_inactive(source_ord=source_ord):
                continue
            batch_time_left = (
                None
                if batch_timeout_moment is None
                else max((batch_timeout_moment - datetime.now()).total_seconds(), 0.0)
            )
            try:
                frame = source.read_frame(timeout=batch_time_left)
                if frame is not None:
                    batch_frames.append(frame)
            except EndOfStreamError:
                self._register_end_of_stream(source_ord=source_ord)
        self.join_all_reconnection_threads()
        self._last_batch_yielded_time = datetime.now()
        return batch_frames

    def all_sources_ended(self) -> bool:
        return len(self._ended_sources) >= len(self._video_sources.all_sources)

    def join_all_reconnection_threads(self, include_not_finished: bool = False) -> None:
        for source_ord in copy(self._threads_to_join):
            self._purge_reconnection_thread(source_ord=source_ord)
        if not include_not_finished:
            return None
        for source_ord in list(self._reconnection_threads.keys()):
            self._purge_reconnection_thread(source_ord=source_ord)

    def _is_source_inactive(self, source_ord: int) -> bool:
        return (
            source_ord in self._ended_sources
            or source_ord in self._reconnection_threads
        )

    def _register_end_of_stream(self, source_ord: int) -> None:
        source_should_reconnect = self._video_sources.allow_reconnection[source_ord]
        if source_should_reconnect:
            self._reconnect_source(source_ord=source_ord)
        else:
            self._ended_sources.add(source_ord)

    def _reconnect_source(self, source_ord: int) -> None:
        if source_ord in self._reconnection_threads:
            return None
        self._reconnection_threads[source_ord] = Thread(
            target=_attempt_reconnect,
            args=(
                self._video_sources.all_sources[source_ord],
                partial(self._should_stop, source_ord=source_ord),
                self._on_reconnection_error,
                partial(self._register_thread_to_join, source_ord=source_ord),
                partial(self._register_reconnection_fatal_error, source_ord=source_ord),
            ),
        )
        self._reconnection_threads[source_ord].start()

    def _register_reconnection_fatal_error(self, source_ord: int) -> None:
        self._register_thread_to_join(source_ord=source_ord)
        self._ended_sources.add(source_ord)

    def _register_thread_to_join(self, source_ord: int) -> None:
        self._threads_to_join.add(source_ord)

    def _purge_reconnection_thread(self, source_ord: int) -> None:
        if source_ord not in self._reconnection_threads:
            return None
        self._enforce_stop[source_ord] = True
        self._reconnection_threads[source_ord].join()
        del self._reconnection_threads[source_ord]
        self._enforce_stop[source_ord] = False
        if source_ord in self._threads_to_join:
            self._threads_to_join.remove(source_ord)

    def _should_stop(self, source_ord: int) -> bool:
        if self._external_should_stop():
            return True
        return self._enforce_stop.get(source_ord, False)

get_video_frames_generator(video, max_fps=None, limiter_strategy=None)

Util function to create a frames generator from VideoSource with possibility to limit FPS of consumed frames and dictate what to do if frames are produced to fast.

Parameters:

Name Type Description Default
video Union[VideoSource, str, int]

Either instance of VideoSource or video reference accepted by VideoSource.init(...)

required
max_fps Optional[Union[float, int]]

value of maximum FPS rate of generated frames - can be used to limit generation frequency

None
limiter_strategy Optional[FPSLimiterStrategy]

strategy used to deal with frames decoding exceeding limit of max_fps. By default - for files, in the interest of processing all frames - generation will be awaited, for streams - frames will be dropped on the floor.

None

Returns: generator of VideoFrame

Example
from inference.core.interfaces.camera.utils import get_video_frames_generator

for frame in get_video_frames_generator(
    video="./some.mp4",
    max_fps=50,
):
     pass
Source code in inference/core/interfaces/camera/utils.py
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
def get_video_frames_generator(
    video: Union[VideoSource, str, int],
    max_fps: Optional[Union[float, int]] = None,
    limiter_strategy: Optional[FPSLimiterStrategy] = None,
) -> Generator[VideoFrame, None, None]:
    """
    Util function to create a frames generator from `VideoSource` with possibility to
    limit FPS of consumed frames and dictate what to do if frames are produced to fast.

    Args:
        video (Union[VideoSource, str, int]): Either instance of VideoSource or video reference accepted
            by VideoSource.init(...)
        max_fps (Optional[Union[float, int]]): value of maximum FPS rate of generated frames - can be used to limit
            generation frequency
        limiter_strategy (Optional[FPSLimiterStrategy]): strategy used to deal with frames decoding exceeding
            limit of `max_fps`. By default - for files, in the interest of processing all frames -
            generation will be awaited, for streams - frames will be dropped on the floor.
    Returns: generator of `VideoFrame`

    Example:
        ```python
        from inference.core.interfaces.camera.utils import get_video_frames_generator

        for frame in get_video_frames_generator(
            video="./some.mp4",
            max_fps=50,
        ):
             pass
        ```
    """
    is_managed_source = False
    if issubclass(type(video), str) or issubclass(type(video), int):
        video = VideoSource.init(
            video_reference=video,
        )
        video.start()
        is_managed_source = True
    if max_fps is None:
        yield from video
        if is_managed_source:
            video.terminate(purge_frames_buffer=True)
        return None
    limiter_strategy = resolve_limiter_strategy(
        explicitly_defined_strategy=limiter_strategy,
        source_properties=video.describe_source().source_properties,
    )
    yield from limit_frame_rate(
        frames_generator=video, max_fps=max_fps, strategy=limiter_strategy
    )
    if is_managed_source:
        video.terminate(purge_frames_buffer=True)
    return None

multiplex_videos(videos, max_fps=None, limiter_strategy=None, batch_collection_timeout=None, force_stream_reconnection=True, should_stop=never_stop, on_reconnection_error=log_error)

Function that is supposed to provide a generator over frames from multiple video sources. It is capable to initialise VideoSource from references to video files or streams and grab frames from all the sources - each running individual decoding on separate thread. In each cycle it attempts to grab frames from all sources (and wait at max batch_collection_timeout for whole batch to be collected). If frame from specific source cannot be collected in that time - it is simply not included in returned list. If after batch collection list of frames is empty - new collection start immediately. Collection does not account for sources that lost connectivity (example: streams that went offline). If that does not happen and stream has large latency - without reasonable batch_collection_timeout it will slow down processing - so please set it up in PROD solutions. In case of video streams (not video files) - given that force_stream_reconnection=True function will attempt to re-connect to disconnected source using background thread, not impairing batch frames collection and that source is not going to block frames retrieval even if infinite batch_collection_timeout=None is set. Similarly, when processing files - video file that is shorter than other passed into processing will not block the whole flow after End Of Stream (EOS).

All sources must be accessible on start - if that's not the case - logic function raises SourceConnectionError and closes all video sources it opened on it own. Disconnections at later stages are handled by re-connection mechanism.

Parameters:

Name Type Description Default
videos List[Union[VideoSource, str, int]]

List with references to video sources. Elements can be pre-initialised VideoSource instances, str with stream URI or file location or int representing camera device attached to the PC/server running the code.

required
max_fps Optional[Union[float, int]]

Upper-bound of processing speed - to be used when one wants at max max_fps video frames per second to be yielded from all sources by the generator.

None
limiter_strategy Optional[FPSLimiterStrategy]

strategy used to deal with frames decoding exceeding limit of max_fps. For video files, in the interest of processing all frames - we recommend WAIT mode, for streams - frames should be dropped on the floor with DROP strategy. Not setting the strategy equals using automatic mode - WAIT if all sources are files and DROP otherwise

None
batch_collection_timeout Optional[float]

maximum await time to get batch of predictions from all sources. None means infinite timeout.

None
force_stream_reconnection bool

Flag to decide on reconnection to streams (files are never re-connected)

True
should_stop Callable[[], bool]

external stop signal that is periodically checked - to denote that video consumption stopped - make the function to return True

never_stop
on_reconnection_error Callable[[Optional[int], SourceConnectionError], None]

Function that will be called whenever source cannot re-connect after disconnection. First parameter is source_id, second is connection error instance.

log_error

Returns Generator[List[VideoFrame], None, None]: allowing to iterate through frames from multiple video sources.

Raises:

Type Description
SourceConnectionError

when one or more source is not reachable at start of generation

Example
from inference.core.interfaces.camera.utils import multiplex_videos

for frames in multiplex_videos(videos=["./some.mp4", "./other.mp4"]):
     for frame in frames:
        pass  # do something with frame
Source code in inference/core/interfaces/camera/utils.py
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
def multiplex_videos(
    videos: List[Union[VideoSource, str, int]],
    max_fps: Optional[Union[float, int]] = None,
    limiter_strategy: Optional[FPSLimiterStrategy] = None,
    batch_collection_timeout: Optional[float] = None,
    force_stream_reconnection: bool = True,
    should_stop: Callable[[], bool] = never_stop,
    on_reconnection_error: Callable[
        [Optional[int], SourceConnectionError], None
    ] = log_error,
) -> Generator[List[VideoFrame], None, None]:
    """
    Function that is supposed to provide a generator over frames from multiple video sources. It is capable to
    initialise `VideoSource` from references to video files or streams and grab frames from all the sources -
    each running individual decoding on separate thread. In each cycle it attempts to grab frames from all sources
    (and wait at max `batch_collection_timeout` for whole batch to be collected). If frame from specific source
    cannot be collected in that time - it is simply not included in returned list. If after batch collection list of
    frames is empty - new collection start immediately. Collection does not account for
    sources that lost connectivity (example: streams that went offline). If that does not happen and stream has
    large latency - without reasonable `batch_collection_timeout` it will slow down processing - so please
    set it up in PROD solutions. In case of video streams (not video files) - given that
    `force_stream_reconnection=True` function will attempt to re-connect to disconnected source using background thread,
    not impairing batch frames collection and that source is not going to block frames retrieval even if infinite
    `batch_collection_timeout=None` is set. Similarly, when processing files - video file that is shorter than other
    passed into processing will not block the whole flow after End Of Stream (EOS).

    All sources must be accessible on start - if that's not the case - logic function raises `SourceConnectionError`
    and closes all video sources it opened on it own. Disconnections at later stages are handled by re-connection
    mechanism.

    Args:
        videos (List[Union[VideoSource, str, int]]): List with references to video sources. Elements can be
            pre-initialised `VideoSource` instances, str with stream URI or file location or int representing
            camera device attached to the PC/server running the code.
        max_fps (Optional[Union[float, int]]): Upper-bound of processing speed - to be used when one wants at max
            `max_fps` video frames per second to be yielded from all sources by the generator.
        limiter_strategy (Optional[FPSLimiterStrategy]): strategy used to deal with frames decoding exceeding
            limit of `max_fps`. For video files, in the interest of processing all frames - we recommend WAIT mode,
             for streams - frames should be dropped on the floor with DROP strategy. Not setting the strategy equals
             using automatic mode - WAIT if all sources are files and DROP otherwise
        batch_collection_timeout (Optional[float]): maximum await time to get batch of predictions from all sources.
            `None` means infinite timeout.
        force_stream_reconnection (bool): Flag to decide on reconnection to streams (files are never re-connected)
        should_stop (Callable[[], bool]): external stop signal that is periodically checked - to denote that
            video consumption stopped - make the function to return True
        on_reconnection_error (Callable[[Optional[int], SourceConnectionError], None]): Function that will be
            called whenever source cannot re-connect after disconnection. First parameter is source_id, second
            is connection error instance.

    Returns Generator[List[VideoFrame], None, None]: allowing to iterate through frames from multiple video sources.

    Raises:
        SourceConnectionError: when one or more source is not reachable at start of generation

    Example:
        ```python
        from inference.core.interfaces.camera.utils import multiplex_videos

        for frames in multiplex_videos(videos=["./some.mp4", "./other.mp4"]):
             for frame in frames:
                pass  # do something with frame
        ```
    """
    video_sources = _prepare_video_sources(
        videos=videos, force_stream_reconnection=force_stream_reconnection
    )
    if any(rule is None for rule in video_sources.allow_reconnection):
        logger.warning("Could not connect to all sources.")
        return None
    generator = _multiplex_videos(
        video_sources=video_sources,
        batch_collection_timeout=batch_collection_timeout,
        should_stop=should_stop,
        on_reconnection_error=on_reconnection_error,
    )
    if max_fps is None:
        yield from generator
        return None
    max_fps = max_fps / len(videos)
    if limiter_strategy is None:
        limiter_strategy = negotiate_rate_limiter_strategy_for_multiple_sources(
            video_sources=video_sources.all_sources,
        )
    yield from limit_frame_rate(
        frames_generator=generator, max_fps=max_fps, strategy=limiter_strategy
    )