Inference pipeline
InferencePipeline
¶
Source code in inference/core/interfaces/stream/inference_pipeline.py
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 |
|
init(video_reference, model_id, on_prediction=None, api_key=None, max_fps=None, watchdog=None, status_update_handlers=None, source_buffer_filling_strategy=None, source_buffer_consumption_strategy=None, class_agnostic_nms=None, confidence=None, iou_threshold=None, max_candidates=None, max_detections=None, mask_decode_mode='accurate', tradeoff_factor=0.0, active_learning_enabled=None, video_source_properties=None, active_learning_target_dataset=None, batch_collection_timeout=None, sink_mode=SinkMode.ADAPTIVE)
classmethod
¶
This class creates the abstraction for making inferences from Roboflow models against video stream. It allows to choose model from Roboflow platform and run predictions against video streams - just by the price of specifying which model to use and what to do with predictions.
It allows to set the model post-processing parameters (via .init() or env) and intercept updates
related to state of pipeline via PipelineWatchDog
abstraction (although that is something probably
useful only for advanced use-cases).
For maximum efficiency, all separate chunks of processing: video decoding, inference, results dispatching are handled by separate threads.
Given that reference to stream is passed and connectivity is lost - it attempts to re-connect with delay.
Since version 0.9.11 it works not only for object detection models but is also compatible with stubs, classification, instance-segmentation and keypoint-detection models.
Since version 0.9.18, InferencePipeline
is capable of handling multiple video sources at once. If multiple
sources are provided - source multiplexing will happen. One of the change introduced in that release is switch
from get_video_frames_generator(...)
as video frames provider into multiplex_videos(...)
. For a single
video source, the behaviour of InferencePipeline
is remained unchanged when default parameters are used.
For multiple videos - frames are multiplexed, and we can adjust the pipeline behaviour using new configuration
options. batch_collection_timeout
is one of the new option - it is the parameter of multiplex_videos(...)
that dictates how long the batch frames collection process may wait for all sources to provide video frame.
It can be set infinite (None) or with specific value representing fraction of second. We advise that value to
be set in production solutions to avoid processing slow-down caused by source with unstable latency spikes.
For more information on multiplexing process - please visit multiplex_videos(...)
function docs.
Another change is the way on how sinks work. They can work in SinkMode.ADAPTIVE
- which means that
video frames and predictions will be either provided to sink as list of objects, or specific elements -
and the determining factor is number of sources (it will behave SEQUENTIAL for one source and BATCH if multiple
ones are provided). All old sinks were adjusted to work in both modes, custom ones should be migrated
to reflect changes in sink function signature.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
str
|
Name and version of model on the Roboflow platform (example: "my-model/3") |
required |
video_reference
|
Union[str, int, List[Union[str, int]]]
|
Reference of source or sources to be used to make
predictions against. It can be video file path, stream URL and device (like camera) id
(we handle whatever cv2 handles). It can also be a list of references (since v0.9.18) - and then
it will trigger parallel processing of multiple sources. It has some implication on sinks. See:
|
required |
on_prediction
|
Callable[AnyPrediction, VideoFrame], None]
|
Function to be called once prediction is ready - passing both decoded frame, their metadata and dict with standard Roboflow model prediction (different for specific types of models). |
None
|
api_key
|
Optional[str]
|
Roboflow API key - if not passed - will be looked in env under "ROBOFLOW_API_KEY" and "API_KEY" variables. API key, passed in some form is required. |
None
|
max_fps
|
Optional[Union[float, int]]
|
Specific value passed as this parameter will be used to
dictate max FPS of each video source.
The implementation details of this option has been changed in release |
None
|
watchdog
|
Optional[PipelineWatchDog]
|
Implementation of class that allows profiling of inference pipeline - if not given null implementation (doing nothing) will be used. |
None
|
status_update_handlers
|
Optional[List[Callable[[StatusUpdate], None]]]
|
List of handlers to intercept status updates of all elements of the pipeline. Should be used only if detailed inspection of pipeline behaviour in time is needed. Please point out that handlers should be possible to be executed fast - otherwise they will impair pipeline performance. All errors will be logged as warnings without re-raising. Default: None. |
None
|
source_buffer_filling_strategy
|
Optional[BufferFillingStrategy]
|
Parameter dictating strategy for
video stream decoding behaviour. By default - tweaked to the type of source given.
Please find detailed explanation in docs of |
None
|
source_buffer_consumption_strategy
|
Optional[BufferConsumptionStrategy]
|
Parameter dictating strategy for
video stream frames consumption. By default - tweaked to the type of source given.
Please find detailed explanation in docs of |
None
|
class_agnostic_nms
|
Optional[bool]
|
Parameter of model post-processing. If not given - value checked in env variable "CLASS_AGNOSTIC_NMS" with default "False" |
None
|
confidence
|
Optional[float]
|
Parameter of model post-processing. If not given - value checked in env variable "CONFIDENCE" with default "0.5" |
None
|
iou_threshold
|
Optional[float]
|
Parameter of model post-processing. If not given - value checked in env variable "IOU_THRESHOLD" with default "0.5" |
None
|
max_candidates
|
Optional[int]
|
Parameter of model post-processing. If not given - value checked in env variable "MAX_CANDIDATES" with default "3000" |
None
|
max_detections
|
Optional[int]
|
Parameter of model post-processing. If not given - value checked in env variable "MAX_DETECTIONS" with default "300" |
None
|
mask_decode_mode
|
Optional[str]
|
(Optional[str]): Parameter of model post-processing. If not given - model "accurate" is used. Applicable for instance segmentation models |
'accurate'
|
tradeoff_factor
|
Optional[float]
|
Parameter of model post-processing. If not 0.0 - model default is used. Applicable for instance segmentation models |
0.0
|
active_learning_enabled
|
Optional[bool]
|
Flag to enable / disable Active Learning middleware (setting it
true does not guarantee any data to be collected, as data collection is controlled by Roboflow backend -
it just enables middleware intercepting predictions). If not given, env variable
|
None
|
video_source_properties
|
Optional[Union[Dict[str, float], List[Optional[Dict[str, float]]]]]
|
Optional source properties to set up the video source, corresponding to cv2 VideoCapture properties
cv2.CAP_PROP_*. If not given, defaults for the video source will be used.
It is optional and if provided can be provided as single dict (applicable for all sources) or
as list of configs. Then the list must be of length of |
None
|
active_learning_target_dataset
|
Optional[str]
|
Parameter to be used when Active Learning data registration should happen against different dataset than the one pointed by model_id |
None
|
batch_collection_timeout
|
Optional[float]
|
Parameter of multiplex_videos(...) dictating how long process
to grab frames from multiple sources can wait for batch to be filled before yielding already collected
frames. Please set this value in PRODUCTION to avoid performance drops when specific sources shows
unstable latency. Visit |
None
|
sink_mode
|
SinkMode
|
Parameter that controls how video frames and predictions will be passed to sink
handler. With SinkMode.SEQUENTIAL - each frame and prediction triggers separate call for sink,
in case of SinkMode.BATCH - list of frames and predictions will be provided to sink, always aligned
in the order of video sources - with None values in the place of vide_frames / predictions that
were skipped due to |
ADAPTIVE
|
Other ENV variables involved in low-level configuration: * INFERENCE_PIPELINE_PREDICTIONS_QUEUE_SIZE - size of buffer for predictions that are ready for dispatching * INFERENCE_PIPELINE_RESTART_ATTEMPT_DELAY - delay for restarts on stream connection drop * ACTIVE_LEARNING_ENABLED - controls Active Learning middleware if explicit parameter not given
Returns: Instance of InferencePipeline
Throws
- SourceConnectionError if source cannot be connected at start, however it attempts to reconnect always if connection to stream is lost.
Source code in inference/core/interfaces/stream/inference_pipeline.py
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
|
init_with_custom_logic(video_reference, on_video_frame, on_prediction=None, on_pipeline_start=None, on_pipeline_end=None, max_fps=None, watchdog=None, status_update_handlers=None, source_buffer_filling_strategy=None, source_buffer_consumption_strategy=None, video_source_properties=None, batch_collection_timeout=None, sink_mode=SinkMode.ADAPTIVE)
classmethod
¶
This class creates the abstraction for making inferences from given workflow against video stream.
The way of how InferencePipeline
works is displayed in InferencePipeline.init(...)
initialiser
method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
video_reference
|
Union[str, int, List[Union[str, int]]]
|
Reference of source or sources to be used to make
predictions against. It can be video file path, stream URL and device (like camera) id
(we handle whatever cv2 handles). It can also be a list of references (since v0.9.18) - and then
it will trigger parallel processing of multiple sources. It has some implication on sinks. See:
|
required |
on_video_frame
|
Callable[[VideoFrame], AnyPrediction]
|
function supposed to make prediction (or do another
kind of custom processing according to your will). Accept |
required |
on_prediction
|
Callable[AnyPrediction, VideoFrame], None]
|
Function to be called
once prediction is ready - passing both decoded frame, their metadata and dict with output from your
custom callable |
None
|
on_pipeline_start
|
Optional[Callable[[], None]]
|
Optional (parameter-free) function to be called whenever pipeline starts |
None
|
on_pipeline_end
|
Optional[Callable[[], None]]
|
Optional (parameter-free) function to be called whenever pipeline ends |
None
|
max_fps
|
Optional[Union[float, int]]
|
Specific value passed as this parameter will be used to
dictate max FPS of each video source.
The implementation details of this option has been changed in release |
None
|
watchdog
|
Optional[PipelineWatchDog]
|
Implementation of class that allows profiling of inference pipeline - if not given null implementation (doing nothing) will be used. |
None
|
status_update_handlers
|
Optional[List[Callable[[StatusUpdate], None]]]
|
List of handlers to intercept status updates of all elements of the pipeline. Should be used only if detailed inspection of pipeline behaviour in time is needed. Please point out that handlers should be possible to be executed fast - otherwise they will impair pipeline performance. All errors will be logged as warnings without re-raising. Default: None. |
None
|
source_buffer_filling_strategy
|
Optional[BufferFillingStrategy]
|
Parameter dictating strategy for
video stream decoding behaviour. By default - tweaked to the type of source given.
Please find detailed explanation in docs of |
None
|
source_buffer_consumption_strategy
|
Optional[BufferConsumptionStrategy]
|
Parameter dictating strategy for
video stream frames consumption. By default - tweaked to the type of source given.
Please find detailed explanation in docs of |
None
|
video_source_properties
|
Optional[Union[Dict[str, float], List[Optional[Dict[str, float]]]]]
|
Optional source properties to set up the video source, corresponding to cv2 VideoCapture properties
cv2.CAP_PROP_*. If not given, defaults for the video source will be used.
It is optional and if provided can be provided as single dict (applicable for all sources) or
as list of configs. Then the list must be of length of |
None
|
batch_collection_timeout
|
Optional[float]
|
Parameter of multiplex_videos(...) dictating how long process
to grab frames from multiple sources can wait for batch to be filled before yielding already collected
frames. Please set this value in PRODUCTION to avoid performance drops when specific sources shows
unstable latency. Visit |
None
|
sink_mode
|
SinkMode
|
Parameter that controls how video frames and predictions will be passed to sink
handler. With SinkMode.SEQUENTIAL - each frame and prediction triggers separate call for sink,
in case of SinkMode.BATCH - list of frames and predictions will be provided to sink, always aligned
in the order of video sources - with None values in the place of vide_frames / predictions that
were skipped due to |
ADAPTIVE
|
Other ENV variables involved in low-level configuration: * INFERENCE_PIPELINE_PREDICTIONS_QUEUE_SIZE - size of buffer for predictions that are ready for dispatching * INFERENCE_PIPELINE_RESTART_ATTEMPT_DELAY - delay for restarts on stream connection drop
Returns: Instance of InferencePipeline
Throws
- SourceConnectionError if source cannot be connected at start, however it attempts to reconnect always if connection to stream is lost.
Source code in inference/core/interfaces/stream/inference_pipeline.py
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 |
|
init_with_workflow(video_reference, workflow_specification=None, workspace_name=None, workflow_id=None, api_key=None, image_input_name='image', workflows_parameters=None, on_prediction=None, max_fps=None, watchdog=None, status_update_handlers=None, source_buffer_filling_strategy=None, source_buffer_consumption_strategy=None, video_source_properties=None, workflow_init_parameters=None, workflows_thread_pool_workers=4, cancel_thread_pool_tasks_on_exit=True, video_metadata_input_name='video_metadata', batch_collection_timeout=None, profiling_directory='./inference_profiling', use_workflow_definition_cache=True, serialize_results=False)
classmethod
¶
This class creates the abstraction for making inferences from given workflow against video stream.
The way of how InferencePipeline
works is displayed in InferencePipeline.init(...)
initializer
method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
video_reference
|
Union[str, int, List[Union[str, int]]]
|
Reference of source to be used to make predictions
against. It can be video file path, stream URL and device (like camera) id
(we handle whatever cv2 handles). It can also be a list of references (since v0.13.0) - and then
it will trigger parallel processing of multiple sources. It has some implication on sinks. See:
|
required |
workflow_specification
|
Optional[dict]
|
Valid specification of workflow. See workflow docs.
It can be provided optionally, but if not given, both |
None
|
workspace_name
|
Optional[str]
|
When using registered workflows - Roboflow workspace name needs to be given. |
None
|
workflow_id
|
Optional[str]
|
When using registered workflows - Roboflow workflow id needs to be given. |
None
|
api_key
|
Optional[str]
|
Roboflow API key - if not passed - will be looked in env under "ROBOFLOW_API_KEY" and "API_KEY" variables. API key, passed in some form is required. |
None
|
image_input_name
|
str
|
Name of input image defined in |
'image'
|
workflows_parameters
|
Optional[Dict[str, Any]]
|
Dictionary with additional parameters that can be
defined within |
None
|
on_prediction
|
Callable[AnyPrediction, VideoFrame], None]
|
Function to be called once prediction is ready - passing both decoded frame, their metadata and dict with workflow output. |
None
|
max_fps
|
Optional[Union[float, int]]
|
Specific value passed as this parameter will be used to
dictate max FPS of each video source.
The implementation details of this option has been changed in release |
None
|
watchdog
|
Optional[PipelineWatchDog]
|
Implementation of class that allows profiling of inference pipeline - if not given null implementation (doing nothing) will be used. |
None
|
status_update_handlers
|
Optional[List[Callable[[StatusUpdate], None]]]
|
List of handlers to intercept status updates of all elements of the pipeline. Should be used only if detailed inspection of pipeline behaviour in time is needed. Please point out that handlers should be possible to be executed fast - otherwise they will impair pipeline performance. All errors will be logged as warnings without re-raising. Default: None. |
None
|
source_buffer_filling_strategy
|
Optional[BufferFillingStrategy]
|
Parameter dictating strategy for
video stream decoding behaviour. By default - tweaked to the type of source given.
Please find detailed explanation in docs of |
None
|
source_buffer_consumption_strategy
|
Optional[BufferConsumptionStrategy]
|
Parameter dictating strategy for
video stream frames consumption. By default - tweaked to the type of source given.
Please find detailed explanation in docs of |
None
|
video_source_properties
|
Optional[dict[str, float]]
|
Optional source properties to set up the video source, corresponding to cv2 VideoCapture properties cv2.CAP_PROP_*. If not given, defaults for the video source will be used. Example valid properties are: {"frame_width": 1920, "frame_height": 1080, "fps": 30.0} |
None
|
workflow_init_parameters
|
Optional[Dict[str, Any]]
|
Additional init parameters to be used by workflows Execution Engine to init steps of your workflow - may be required when running workflows with custom plugins. |
None
|
workflows_thread_pool_workers
|
int
|
Number of workers for workflows thread pool which is used by workflows blocks to run background tasks. |
4
|
cancel_thread_pool_tasks_on_exit
|
bool
|
Flag to decide if unstated background tasks should be canceled at the end of InferencePipeline processing. By default, when video file ends or pipeline is stopped, tasks that has not started will be cancelled. |
True
|
video_metadata_input_name
|
str
|
Name of input for video metadata defined in |
'video_metadata'
|
batch_collection_timeout
|
Optional[float]
|
Parameter of multiplex_videos(...) dictating how long process
to grab frames from multiple sources can wait for batch to be filled before yielding already collected
frames. Please set this value in PRODUCTION to avoid performance drops when specific sources shows
unstable latency. Visit |
None
|
profiling_directory
|
str
|
Directory where workflows profiler traces will be dumped. To enable profiling
export |
'./inference_profiling'
|
use_workflow_definition_cache
|
bool
|
Controls usage of cache for workflow definitions. Set this to False when you frequently modify definition saved in Roboflow app and want to fetch the newest version for the request. Only applies for Workflows definitions saved on Roboflow platform. |
True
|
serialize_results
|
bool
|
Boolean flag to decide if ExecutionEngine run should serialize workflow results for each frame. If that is set true, sinks will receive serialized workflow responses. |
False
|
Other ENV variables involved in low-level configuration: * INFERENCE_PIPELINE_PREDICTIONS_QUEUE_SIZE - size of buffer for predictions that are ready for dispatching * INFERENCE_PIPELINE_RESTART_ATTEMPT_DELAY - delay for restarts on stream connection drop
Returns: Instance of InferencePipeline
Throws
- SourceConnectionError if source cannot be connected at start, however it attempts to reconnect always if connection to stream is lost.
- ValueError if workflow specification not provided and registered workflow not pointed out
- NotImplementedError if workflow used against multiple videos which is not supported yet
- MissingApiKeyError - if API key is not provided in situation when retrieving workflow definition from Roboflow API is needed
Source code in inference/core/interfaces/stream/inference_pipeline.py
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
|
init_with_yolo_world(video_reference, classes, model_size='s', on_prediction=None, max_fps=None, watchdog=None, status_update_handlers=None, source_buffer_filling_strategy=None, source_buffer_consumption_strategy=None, class_agnostic_nms=None, confidence=None, iou_threshold=None, max_candidates=None, max_detections=None, video_source_properties=None, batch_collection_timeout=None, sink_mode=SinkMode.ADAPTIVE)
classmethod
¶
This class creates the abstraction for making inferences from YoloWorld against video stream.
The way of how InferencePipeline
works is displayed in InferencePipeline.init(...)
initializer
method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
video_reference
|
Union[str, int, List[Union[str, int]]]
|
Reference of source or sources to be used to make
predictions against. It can be video file path, stream URL and device (like camera) id
(we handle whatever cv2 handles). It can also be a list of references (since v0.9.18) - and then
it will trigger parallel processing of multiple sources. It has some implication on sinks. See:
|
required |
classes
|
List[str]
|
List of classes to execute zero-shot detection against |
required |
model_size
|
str
|
version of model - to be chosen from |
's'
|
on_prediction
|
Callable[AnyPrediction, VideoFrame], None]
|
Function to be called once prediction is ready - passing both decoded frame, their metadata and dict with standard Roboflow Object Detection prediction. |
None
|
max_fps
|
Optional[Union[float, int]]
|
Specific value passed as this parameter will be used to
dictate max FPS of each video source.
The implementation details of this option has been changed in release |
None
|
watchdog
|
Optional[PipelineWatchDog]
|
Implementation of class that allows profiling of inference pipeline - if not given null implementation (doing nothing) will be used. |
None
|
status_update_handlers
|
Optional[List[Callable[[StatusUpdate], None]]]
|
List of handlers to intercept status updates of all elements of the pipeline. Should be used only if detailed inspection of pipeline behaviour in time is needed. Please point out that handlers should be possible to be executed fast - otherwise they will impair pipeline performance. All errors will be logged as warnings without re-raising. Default: None. |
None
|
source_buffer_filling_strategy
|
Optional[BufferFillingStrategy]
|
Parameter dictating strategy for
video stream decoding behaviour. By default - tweaked to the type of source given.
Please find detailed explanation in docs of |
None
|
source_buffer_consumption_strategy
|
Optional[BufferConsumptionStrategy]
|
Parameter dictating strategy for
video stream frames consumption. By default - tweaked to the type of source given.
Please find detailed explanation in docs of |
None
|
class_agnostic_nms
|
Optional[bool]
|
Parameter of model post-processing. If not given - value checked in env variable "CLASS_AGNOSTIC_NMS" with default "False" |
None
|
confidence
|
Optional[float]
|
Parameter of model post-processing. If not given - value checked in env variable "CONFIDENCE" with default "0.5" |
None
|
iou_threshold
|
Optional[float]
|
Parameter of model post-processing. If not given - value checked in env variable "IOU_THRESHOLD" with default "0.5" |
None
|
max_candidates
|
Optional[int]
|
Parameter of model post-processing. If not given - value checked in env variable "MAX_CANDIDATES" with default "3000" |
None
|
max_detections
|
Optional[int]
|
Parameter of model post-processing. If not given - value checked in env variable "MAX_DETECTIONS" with default "300" |
None
|
video_source_properties
|
Optional[Union[Dict[str, float], List[Optional[Dict[str, float]]]]]
|
Optional source properties to set up the video source, corresponding to cv2 VideoCapture properties
cv2.CAP_PROP_*. If not given, defaults for the video source will be used.
It is optional and if provided can be provided as single dict (applicable for all sources) or
as list of configs. Then the list must be of length of |
None
|
batch_collection_timeout
|
Optional[float]
|
Parameter of multiplex_videos(...) dictating how long process
to grab frames from multiple sources can wait for batch to be filled before yielding already collected
frames. Please set this value in PRODUCTION to avoid performance drops when specific sources shows
unstable latency. Visit |
None
|
sink_mode
|
SinkMode
|
Parameter that controls how video frames and predictions will be passed to sink
handler. With SinkMode.SEQUENTIAL - each frame and prediction triggers separate call for sink,
in case of SinkMode.BATCH - list of frames and predictions will be provided to sink, always aligned
in the order of video sources - with None values in the place of vide_frames / predictions that
were skipped due to |
ADAPTIVE
|
Other ENV variables involved in low-level configuration: * INFERENCE_PIPELINE_PREDICTIONS_QUEUE_SIZE - size of buffer for predictions that are ready for dispatching * INFERENCE_PIPELINE_RESTART_ATTEMPT_DELAY - delay for restarts on stream connection drop
Returns: Instance of InferencePipeline
Throws
- SourceConnectionError if source cannot be connected at start, however it attempts to reconnect always if connection to stream is lost.
Source code in inference/core/interfaces/stream/inference_pipeline.py
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
|