Skip to content

Watchdog

This module contains component intended to use in combination with InferencePipeline to ensure observability. Please consider them internal details of implementation.

BasePipelineWatchDog ΒΆ

Bases: PipelineWatchDog

Implementation to be used from single inference thread, as it keeps state assumed to represent status of consecutive stage of prediction process in latency monitor.

Source code in inference/core/interfaces/stream/watchdog.py
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
class BasePipelineWatchDog(PipelineWatchDog):
    """
    Implementation to be used from single inference thread, as it keeps
    state assumed to represent status of consecutive stage of prediction process
    in latency monitor.
    """

    def __init__(self):
        super().__init__()
        self._video_sources: Optional[List[VideoSource]] = None
        self._inference_throughput_monitor = sv.FPSMonitor()
        self._latency_monitors: Dict[Optional[int], LatencyMonitor] = {}
        self._stream_updates = deque(maxlen=MAX_UPDATES_CONTEXT)

    def register_video_sources(self, video_sources: List[VideoSource]) -> None:
        self._video_sources = video_sources
        for source in video_sources:
            self._latency_monitors[source.source_id] = LatencyMonitor(
                source_id=source.source_id
            )

    def on_status_update(self, status_update: StatusUpdate) -> None:
        if status_update.severity.value <= UpdateSeverity.DEBUG.value:
            return None
        self._stream_updates.append(status_update)

    def on_model_inference_started(self, frames: List[VideoFrame]) -> None:
        for frame in frames:
            self._latency_monitors[frame.source_id].register_inference_start(
                frame_timestamp=frame.frame_timestamp,
                frame_id=frame.frame_id,
            )

    def on_model_prediction_ready(self, frames: List[VideoFrame]) -> None:
        for frame in frames:
            self._latency_monitors[frame.source_id].register_prediction_ready(
                frame_timestamp=frame.frame_timestamp,
                frame_id=frame.frame_id,
            )
            self._inference_throughput_monitor.tick()

    def get_report(self) -> PipelineStateReport:
        sources_metadata = []
        if self._video_sources is not None:
            sources_metadata = [s.describe_source() for s in self._video_sources]
        latency_reports = [
            monitor.summarise_reports() for monitor in self._latency_monitors.values()
        ]
        if hasattr(self._inference_throughput_monitor, "fps"):
            _inference_throughput_fps = self._inference_throughput_monitor.fps
        else:
            _inference_throughput_fps = self._inference_throughput_monitor()
        return PipelineStateReport(
            video_source_status_updates=list(self._stream_updates),
            latency_reports=latency_reports,
            inference_throughput=_inference_throughput_fps,
            sources_metadata=sources_metadata,
        )