Skip to content

Base

ModelManagerDecorator

Bases: ModelManager

Basic decorator, it acts like a ModelManager and contains a ModelManager.

Parameters:

Name Type Description Default
model_manager ModelManager

Instance of a ModelManager.

required

Methods:

Name Description
add_model

Adds a model to the manager.

infer

Processes a complete inference request.

infer_only

Performs only the inference part of a request.

preprocess

Processes the preprocessing part of a request.

get_task_type

Gets the task type associated with a model.

get_class_names

Gets the class names for a given model.

remove

Removes a model from the manager.

__len__

Returns the number of models in the manager.

__getitem__

Retrieves a model by its ID.

__contains__

Checks if a model exists in the manager.

keys

Returns the keys (model IDs) from the manager.

Source code in inference/core/managers/decorators/base.py
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
class ModelManagerDecorator(ModelManager):
    """Basic decorator, it acts like a `ModelManager` and contains a `ModelManager`.

    Args:
        model_manager (ModelManager): Instance of a ModelManager.

    Methods:
        add_model: Adds a model to the manager.
        infer: Processes a complete inference request.
        infer_only: Performs only the inference part of a request.
        preprocess: Processes the preprocessing part of a request.
        get_task_type: Gets the task type associated with a model.
        get_class_names: Gets the class names for a given model.
        remove: Removes a model from the manager.
        __len__: Returns the number of models in the manager.
        __getitem__: Retrieves a model by its ID.
        __contains__: Checks if a model exists in the manager.
        keys: Returns the keys (model IDs) from the manager.
    """

    @property
    def _models(self):
        raise ValueError("Should only be accessing self.model_manager._models")

    @property
    def model_registry(self):
        raise ValueError("Should only be accessing self.model_manager.model_registry")

    def __init__(self, model_manager: ModelManager):
        """Initializes the decorator with an instance of a ModelManager."""
        self.model_manager = model_manager

    def init_pingback(self):
        self.model_manager.init_pingback()

    @property
    def pingback(self):
        return self.model_manager.pingback

    def add_model(
        self, model_id: str, api_key: str, model_id_alias: Optional[str] = None
    ):
        """Adds a model to the manager.

        Args:
            model_id (str): The identifier of the model.
            model (Model): The model instance.
        """
        if model_id in self:
            return
        self.model_manager.add_model(model_id, api_key, model_id_alias=model_id_alias)

    async def infer_from_request(
        self, model_id: str, request: InferenceRequest, **kwargs
    ) -> InferenceResponse:
        """Processes a complete inference request.

        Args:
            model_id (str): The identifier of the model.
            request (InferenceRequest): The request to process.

        Returns:
            InferenceResponse: The response from the inference.
        """
        return await self.model_manager.infer_from_request(model_id, request, **kwargs)

    def infer_from_request_sync(
        self, model_id: str, request: InferenceRequest, **kwargs
    ) -> InferenceResponse:
        """Processes a complete inference request.

        Args:
            model_id (str): The identifier of the model.
            request (InferenceRequest): The request to process.

        Returns:
            InferenceResponse: The response from the inference.
        """
        return self.model_manager.infer_from_request_sync(model_id, request, **kwargs)

    def infer_only(self, model_id: str, request, img_in, img_dims, batch_size=None):
        """Performs only the inference part of a request.

        Args:
            model_id (str): The identifier of the model.
            request: The request to process.
            img_in: Input image.
            img_dims: Image dimensions.
            batch_size (int, optional): Batch size.

        Returns:
            Response from the inference-only operation.
        """
        return self.model_manager.infer_only(
            model_id, request, img_in, img_dims, batch_size
        )

    def preprocess(self, model_id: str, request: InferenceRequest):
        """Processes the preprocessing part of a request.

        Args:
            model_id (str): The identifier of the model.
            request (InferenceRequest): The request to preprocess.
        """
        return self.model_manager.preprocess(model_id, request)

    def get_task_type(self, model_id: str, api_key: str = None) -> str:
        """Gets the task type associated with a model.

        Args:
            model_id (str): The identifier of the model.

        Returns:
            str: The task type.
        """
        if api_key is None:
            api_key = API_KEY
        return self.model_manager.get_task_type(model_id, api_key=api_key)

    def get_class_names(self, model_id):
        """Gets the class names for a given model.

        Args:
            model_id: The identifier of the model.

        Returns:
            List of class names.
        """
        return self.model_manager.get_class_names(model_id)

    def remove(self, model_id: str) -> Model:
        """Removes a model from the manager.

        Args:
            model_id (str): The identifier of the model.

        Returns:
            Model: The removed model.
        """
        return self.model_manager.remove(model_id)

    def __len__(self) -> int:
        """Returns the number of models in the manager.

        Returns:
            int: Number of models.
        """
        return len(self.model_manager)

    def __getitem__(self, key: str) -> Model:
        """Retrieves a model by its ID.

        Args:
            key (str): The identifier of the model.

        Returns:
            Model: The model instance.
        """
        return self.model_manager[key]

    def __contains__(self, model_id: str):
        """Checks if a model exists in the manager.

        Args:
            model_id (str): The identifier of the model.

        Returns:
            bool: True if the model exists, False otherwise.
        """
        return model_id in self.model_manager

    def keys(self):
        """Returns the keys (model IDs) from the manager.

        Returns:
            List of keys (model IDs).
        """
        return self.model_manager.keys()

    def models(self):
        return self.model_manager.models()

    def predict(self, model_id: str, *args, **kwargs) -> Tuple[np.ndarray, ...]:
        return self.model_manager.predict(model_id, *args, **kwargs)

    def postprocess(
        self,
        model_id: str,
        predictions: Tuple[np.ndarray, ...],
        preprocess_return_metadata: PreprocessReturnMetadata,
        *args,
        **kwargs
    ) -> List[List[float]]:
        return self.model_manager.postprocess(
            model_id, predictions, preprocess_return_metadata, *args, **kwargs
        )

    def make_response(
        self, model_id: str, predictions: List[List[float]], *args, **kwargs
    ) -> InferenceResponse:
        return self.model_manager.make_response(model_id, predictions, *args, **kwargs)

    @property
    def num_errors(self):
        return self.model_manager.num_errors

    @num_errors.setter
    def num_errors(self, value):
        self.model_manager.num_errors = value

__contains__(model_id)

Checks if a model exists in the manager.

Parameters:

Name Type Description Default
model_id str

The identifier of the model.

required

Returns:

Name Type Description
bool

True if the model exists, False otherwise.

Source code in inference/core/managers/decorators/base.py
172
173
174
175
176
177
178
179
180
181
def __contains__(self, model_id: str):
    """Checks if a model exists in the manager.

    Args:
        model_id (str): The identifier of the model.

    Returns:
        bool: True if the model exists, False otherwise.
    """
    return model_id in self.model_manager

__getitem__(key)

Retrieves a model by its ID.

Parameters:

Name Type Description Default
key str

The identifier of the model.

required

Returns:

Name Type Description
Model Model

The model instance.

Source code in inference/core/managers/decorators/base.py
161
162
163
164
165
166
167
168
169
170
def __getitem__(self, key: str) -> Model:
    """Retrieves a model by its ID.

    Args:
        key (str): The identifier of the model.

    Returns:
        Model: The model instance.
    """
    return self.model_manager[key]

__init__(model_manager)

Initializes the decorator with an instance of a ModelManager.

Source code in inference/core/managers/decorators/base.py
40
41
42
def __init__(self, model_manager: ModelManager):
    """Initializes the decorator with an instance of a ModelManager."""
    self.model_manager = model_manager

__len__()

Returns the number of models in the manager.

Returns:

Name Type Description
int int

Number of models.

Source code in inference/core/managers/decorators/base.py
153
154
155
156
157
158
159
def __len__(self) -> int:
    """Returns the number of models in the manager.

    Returns:
        int: Number of models.
    """
    return len(self.model_manager)

add_model(model_id, api_key, model_id_alias=None)

Adds a model to the manager.

Parameters:

Name Type Description Default
model_id str

The identifier of the model.

required
model Model

The model instance.

required
Source code in inference/core/managers/decorators/base.py
51
52
53
54
55
56
57
58
59
60
61
62
def add_model(
    self, model_id: str, api_key: str, model_id_alias: Optional[str] = None
):
    """Adds a model to the manager.

    Args:
        model_id (str): The identifier of the model.
        model (Model): The model instance.
    """
    if model_id in self:
        return
    self.model_manager.add_model(model_id, api_key, model_id_alias=model_id_alias)

get_class_names(model_id)

Gets the class names for a given model.

Parameters:

Name Type Description Default
model_id

The identifier of the model.

required

Returns:

Type Description

List of class names.

Source code in inference/core/managers/decorators/base.py
131
132
133
134
135
136
137
138
139
140
def get_class_names(self, model_id):
    """Gets the class names for a given model.

    Args:
        model_id: The identifier of the model.

    Returns:
        List of class names.
    """
    return self.model_manager.get_class_names(model_id)

get_task_type(model_id, api_key=None)

Gets the task type associated with a model.

Parameters:

Name Type Description Default
model_id str

The identifier of the model.

required

Returns:

Name Type Description
str str

The task type.

Source code in inference/core/managers/decorators/base.py
118
119
120
121
122
123
124
125
126
127
128
129
def get_task_type(self, model_id: str, api_key: str = None) -> str:
    """Gets the task type associated with a model.

    Args:
        model_id (str): The identifier of the model.

    Returns:
        str: The task type.
    """
    if api_key is None:
        api_key = API_KEY
    return self.model_manager.get_task_type(model_id, api_key=api_key)

infer_from_request(model_id, request, **kwargs) async

Processes a complete inference request.

Parameters:

Name Type Description Default
model_id str

The identifier of the model.

required
request InferenceRequest

The request to process.

required

Returns:

Name Type Description
InferenceResponse InferenceResponse

The response from the inference.

Source code in inference/core/managers/decorators/base.py
64
65
66
67
68
69
70
71
72
73
74
75
76
async def infer_from_request(
    self, model_id: str, request: InferenceRequest, **kwargs
) -> InferenceResponse:
    """Processes a complete inference request.

    Args:
        model_id (str): The identifier of the model.
        request (InferenceRequest): The request to process.

    Returns:
        InferenceResponse: The response from the inference.
    """
    return await self.model_manager.infer_from_request(model_id, request, **kwargs)

infer_from_request_sync(model_id, request, **kwargs)

Processes a complete inference request.

Parameters:

Name Type Description Default
model_id str

The identifier of the model.

required
request InferenceRequest

The request to process.

required

Returns:

Name Type Description
InferenceResponse InferenceResponse

The response from the inference.

Source code in inference/core/managers/decorators/base.py
78
79
80
81
82
83
84
85
86
87
88
89
90
def infer_from_request_sync(
    self, model_id: str, request: InferenceRequest, **kwargs
) -> InferenceResponse:
    """Processes a complete inference request.

    Args:
        model_id (str): The identifier of the model.
        request (InferenceRequest): The request to process.

    Returns:
        InferenceResponse: The response from the inference.
    """
    return self.model_manager.infer_from_request_sync(model_id, request, **kwargs)

infer_only(model_id, request, img_in, img_dims, batch_size=None)

Performs only the inference part of a request.

Parameters:

Name Type Description Default
model_id str

The identifier of the model.

required
request

The request to process.

required
img_in

Input image.

required
img_dims

Image dimensions.

required
batch_size int

Batch size.

None

Returns:

Type Description

Response from the inference-only operation.

Source code in inference/core/managers/decorators/base.py
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
def infer_only(self, model_id: str, request, img_in, img_dims, batch_size=None):
    """Performs only the inference part of a request.

    Args:
        model_id (str): The identifier of the model.
        request: The request to process.
        img_in: Input image.
        img_dims: Image dimensions.
        batch_size (int, optional): Batch size.

    Returns:
        Response from the inference-only operation.
    """
    return self.model_manager.infer_only(
        model_id, request, img_in, img_dims, batch_size
    )

keys()

Returns the keys (model IDs) from the manager.

Returns:

Type Description

List of keys (model IDs).

Source code in inference/core/managers/decorators/base.py
183
184
185
186
187
188
189
def keys(self):
    """Returns the keys (model IDs) from the manager.

    Returns:
        List of keys (model IDs).
    """
    return self.model_manager.keys()

preprocess(model_id, request)

Processes the preprocessing part of a request.

Parameters:

Name Type Description Default
model_id str

The identifier of the model.

required
request InferenceRequest

The request to preprocess.

required
Source code in inference/core/managers/decorators/base.py
109
110
111
112
113
114
115
116
def preprocess(self, model_id: str, request: InferenceRequest):
    """Processes the preprocessing part of a request.

    Args:
        model_id (str): The identifier of the model.
        request (InferenceRequest): The request to preprocess.
    """
    return self.model_manager.preprocess(model_id, request)

remove(model_id)

Removes a model from the manager.

Parameters:

Name Type Description Default
model_id str

The identifier of the model.

required

Returns:

Name Type Description
Model Model

The removed model.

Source code in inference/core/managers/decorators/base.py
142
143
144
145
146
147
148
149
150
151
def remove(self, model_id: str) -> Model:
    """Removes a model from the manager.

    Args:
        model_id (str): The identifier of the model.

    Returns:
        Model: The removed model.
    """
    return self.model_manager.remove(model_id)