Skip to content

Pingback

PingbackInfo

Class responsible for managing pingback information for Roboflow.

This class initializes a scheduler to periodically post data to Roboflow, containing information about the models, container, and device.

Attributes:

Name Type Description
scheduler BackgroundScheduler

A scheduler for running jobs in the background.

model_manager ModelManager

Reference to the model manager object.

process_startup_time str

Unix timestamp indicating when the process started.

METRICS_URL str

URL to send the pingback data to.

system_info dict

Information about the system.

window_start_timestamp str

Unix timestamp indicating the start of the current window.

Source code in inference/core/managers/pingback.py
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
class PingbackInfo:
    """Class responsible for managing pingback information for Roboflow.

    This class initializes a scheduler to periodically post data to Roboflow, containing information about the models,
    container, and device.

    Attributes:
        scheduler (BackgroundScheduler): A scheduler for running jobs in the background.
        model_manager (ModelManager): Reference to the model manager object.
        process_startup_time (str): Unix timestamp indicating when the process started.
        METRICS_URL (str): URL to send the pingback data to.
        system_info (dict): Information about the system.
        window_start_timestamp (str): Unix timestamp indicating the start of the current window.
    """

    def __init__(self, manager):
        """Initializes PingbackInfo with the given manager.

        Args:
            manager (ModelManager): Reference to the model manager object.
        """
        try:
            self.scheduler = BackgroundScheduler(
                job_defaults={"coalesce": True, "max_instances": 1}
            )
            self.model_manager = manager
            self.process_startup_time = str(int(time.time()))
            logger.debug(
                "UUID: " + self.model_manager.uuid
            )  # To correlate with UI container view
            self.window_start_timestamp = str(int(time.time()))
            context = {
                "api_key": API_KEY,
                "timestamp": str(int(time.time())),
                "device_id": GLOBAL_DEVICE_ID,
                "inference_server_id": GLOBAL_INFERENCE_SERVER_ID,
                "inference_server_version": __version__,
                "tags": TAGS,
            }
            self.environment_info = context | get_system_info()

            # we will set this from model manager when a new api key is used
            # to use in case there is no global ENV api key configured
            self.fallback_api_key = None

        except Exception as e:
            logger.debug(
                "Error sending pingback to Roboflow, if you want to disable this feature unset the ROBOFLOW_ENABLED environment variable. "
                + str(e)
            )

    def start(self):
        """Starts the scheduler to periodically post data to Roboflow.

        If METRICS_ENABLED is False, a warning is logged, and the method returns without starting the scheduler.
        """
        if METRICS_ENABLED == False:
            logger.warning(
                "Metrics reporting to Roboflow is disabled; not sending back stats to Roboflow."
            )
            return
        try:
            self.scheduler.add_job(
                self.post_data,
                "interval",
                seconds=METRICS_INTERVAL,
                args=[self.model_manager],
                replace_existing=True,
            )
            self.scheduler.start()
        except Exception as e:
            logger.debug(e)

    def stop(self):
        """Stops the scheduler."""
        self.scheduler.shutdown()

    def post_data(self, model_manager):
        """Posts data to Roboflow about the models, container, device, and other relevant metrics.

        Args:
            model_manager (ModelManager): Reference to the model manager object.

        The data is collected and reset for the next window, and a POST request is made to the pingback URL.
        """
        all_data = self.environment_info.copy()
        all_data["inference_results"] = []

        # use fallback api key if env didn't have one
        if self.fallback_api_key and not all_data.get("api_key"):
            all_data["api_key"] = self.fallback_api_key

        try:
            now = time.time()
            start = now - METRICS_INTERVAL
            for model_id in model_manager.models():
                results = get_inference_results_for_model(
                    GLOBAL_INFERENCE_SERVER_ID, model_id, min=start, max=now
                )
                all_data["inference_results"] = all_data["inference_results"] + results
            res = requests.post(wrap_url(METRICS_URL), json=all_data, timeout=10)
            try:
                api_key_safe_raise_for_status(response=res)
                logger.debug(
                    "Sent metrics to Roboflow {} at {}.".format(
                        METRICS_URL, str(all_data)
                    )
                )
            except Exception as e:
                logger.debug(
                    f"Error sending metrics to Roboflow, if you want to disable this feature unset the METRICS_ENABLED environment variable."
                )

        except Exception as e:
            try:
                logger.debug(
                    f"Error sending metrics to Roboflow, if you want to disable this feature unset the METRICS_ENABLED environment variable. Error was: {e}. Data was: {all_data}"
                )
                traceback.print_exc()

            except Exception as e2:
                logger.debug(
                    f"Error sending metrics to Roboflow, if you want to disable this feature unset the METRICS_ENABLED environment variable. Error was: {e}."
                )

__init__(manager)

Initializes PingbackInfo with the given manager.

Parameters:

Name Type Description Default
manager ModelManager

Reference to the model manager object.

required
Source code in inference/core/managers/pingback.py
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
def __init__(self, manager):
    """Initializes PingbackInfo with the given manager.

    Args:
        manager (ModelManager): Reference to the model manager object.
    """
    try:
        self.scheduler = BackgroundScheduler(
            job_defaults={"coalesce": True, "max_instances": 1}
        )
        self.model_manager = manager
        self.process_startup_time = str(int(time.time()))
        logger.debug(
            "UUID: " + self.model_manager.uuid
        )  # To correlate with UI container view
        self.window_start_timestamp = str(int(time.time()))
        context = {
            "api_key": API_KEY,
            "timestamp": str(int(time.time())),
            "device_id": GLOBAL_DEVICE_ID,
            "inference_server_id": GLOBAL_INFERENCE_SERVER_ID,
            "inference_server_version": __version__,
            "tags": TAGS,
        }
        self.environment_info = context | get_system_info()

        # we will set this from model manager when a new api key is used
        # to use in case there is no global ENV api key configured
        self.fallback_api_key = None

    except Exception as e:
        logger.debug(
            "Error sending pingback to Roboflow, if you want to disable this feature unset the ROBOFLOW_ENABLED environment variable. "
            + str(e)
        )

post_data(model_manager)

Posts data to Roboflow about the models, container, device, and other relevant metrics.

Parameters:

Name Type Description Default
model_manager ModelManager

Reference to the model manager object.

required

The data is collected and reset for the next window, and a POST request is made to the pingback URL.

Source code in inference/core/managers/pingback.py
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def post_data(self, model_manager):
    """Posts data to Roboflow about the models, container, device, and other relevant metrics.

    Args:
        model_manager (ModelManager): Reference to the model manager object.

    The data is collected and reset for the next window, and a POST request is made to the pingback URL.
    """
    all_data = self.environment_info.copy()
    all_data["inference_results"] = []

    # use fallback api key if env didn't have one
    if self.fallback_api_key and not all_data.get("api_key"):
        all_data["api_key"] = self.fallback_api_key

    try:
        now = time.time()
        start = now - METRICS_INTERVAL
        for model_id in model_manager.models():
            results = get_inference_results_for_model(
                GLOBAL_INFERENCE_SERVER_ID, model_id, min=start, max=now
            )
            all_data["inference_results"] = all_data["inference_results"] + results
        res = requests.post(wrap_url(METRICS_URL), json=all_data, timeout=10)
        try:
            api_key_safe_raise_for_status(response=res)
            logger.debug(
                "Sent metrics to Roboflow {} at {}.".format(
                    METRICS_URL, str(all_data)
                )
            )
        except Exception as e:
            logger.debug(
                f"Error sending metrics to Roboflow, if you want to disable this feature unset the METRICS_ENABLED environment variable."
            )

    except Exception as e:
        try:
            logger.debug(
                f"Error sending metrics to Roboflow, if you want to disable this feature unset the METRICS_ENABLED environment variable. Error was: {e}. Data was: {all_data}"
            )
            traceback.print_exc()

        except Exception as e2:
            logger.debug(
                f"Error sending metrics to Roboflow, if you want to disable this feature unset the METRICS_ENABLED environment variable. Error was: {e}."
            )

start()

Starts the scheduler to periodically post data to Roboflow.

If METRICS_ENABLED is False, a warning is logged, and the method returns without starting the scheduler.

Source code in inference/core/managers/pingback.py
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
def start(self):
    """Starts the scheduler to periodically post data to Roboflow.

    If METRICS_ENABLED is False, a warning is logged, and the method returns without starting the scheduler.
    """
    if METRICS_ENABLED == False:
        logger.warning(
            "Metrics reporting to Roboflow is disabled; not sending back stats to Roboflow."
        )
        return
    try:
        self.scheduler.add_job(
            self.post_data,
            "interval",
            seconds=METRICS_INTERVAL,
            args=[self.model_manager],
            replace_existing=True,
        )
        self.scheduler.start()
    except Exception as e:
        logger.debug(e)

stop()

Stops the scheduler.

Source code in inference/core/managers/pingback.py
 98
 99
100
def stop(self):
    """Stops the scheduler."""
    self.scheduler.shutdown()